Article contents
Development of Parallel Dip Pen Nanolithography Probe Arrays for High Throughput Nanolithography
Published online by Cambridge University Press: 11 February 2011
Abstract
Dip Pen Nanolithography (DPN) is a lithographic technique that allows direct deposition of chemicals, metals, biological macromolecules, and other molecular “inks” with nanometer dimensions and precision. This paper addresses recent developments in the design and demonstration of high-density multiprobe DPN arrays. High-density arrays increase the process throughput over individual atomic force microscope (AFM) probes and are easier to use than arrays of undiced commercial probes. We have demonstrated passive arrays made of silicon (8 probes, 310 μm tip-to-tip spacing) and silicon nitride (32 probes, 100 μm tip-to-tip spacing). We have also demonstrated silicon nitride “active” arrays (10 probes, 100 μm tip-to-tip spacing) that have embedded thermal actuators for individual probe control. An optimization model for these devices, based on a generalized multilayer thermal actuator, is also described.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 6
- Cited by