Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:21:15.446Z Has data issue: false hasContentIssue false

Development of conducting buffer architectures using cube textured IBAD-TiN layers

Published online by Cambridge University Press:  01 February 2011

Ruben Hühne
Affiliation:
[email protected], United States
Konrad Güth
Affiliation:
[email protected], IFW Dresden, Dresden, Germany
Martin Kidszun
Affiliation:
[email protected], IFW Dresden, Dresden, Germany
Rainer Kaltofen
Affiliation:
[email protected], IFW Dresden, Dresden, Germany
Vladimir Matias
Affiliation:
[email protected], Los Alamos National Laboratory, Superconductivity Technology Centre, Los Alamos, New Mexico, United States
John Rowley
Affiliation:
[email protected], Los Alamos National Laboratory, Superconductivity Technology Centre, Los Alamos, New Mexico, United States
Ludwig Schultz
Affiliation:
[email protected], IFW Dresden, Dresden, Germany
Bernhard Holzapfel
Affiliation:
[email protected], IFW Dresden, Dresden, Germany
Get access

Abstract

Ion-beam assisted deposition (IBAD) offers the possibility to prepare thin textured films on amorphous or non-textured substrates. In particular, the textured nucleation of TiN is promising for the development of a conducting buffer layer architecture for YBCO coated conductors based on the IBAD approach. Accordingly, cube textured IBAD-TiN layers have been deposited reactively using pulsed laser deposition on Si/Si3N4 substrates as well as on polished Hastelloy tapes using different amorphous seed layers. Metallic buffer layers such as Au, Pt or Ir were grown epitaxially on top of the TiN layer showing texture values similar to the IBAD layer. Smooth layers were obtained using a double layer of Au/Pt or Au/Ir. Biaxially textured YBCO layers were achieved using SrRuO3 or Nb-doped SrTiO3 as a conductive oxide cap layer. Finally, different amorphous conducting seed layers were applied for the IBAD-TiN process. Highly textured TiN films were achieved on amorphous Ta0.75Ni0.25 layers showing a similar in-plane orientation of about 8° as on standard seed layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arendt, P. N. and Foltyn, S. R., MRS Bulletin 29, 543 (2004).Google Scholar
2. Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992).Google Scholar
3. Wang, C. P., Do, K. B., Beasley, M. R., Geballe, T. H., and Hammond, R. H., Appl. Phys. Lett. 71, 2955 (1997).Google Scholar
4. Hühne, R., Fähler, S., and Holzapfel, B., Appl. Phys. Lett. 85, 2744 (2004).Google Scholar
5. Hühne, R., Fähler, S., Schultz, L., and Holzapfel, B., Physica C 426–431, 893 (2005).Google Scholar
6. Hühne, R., Sarma, V. S., Okai, D., Thersleff, T., Schultz, L., and Holzapfel, B., Supercond. Sci. Technol. 20, 709 (2007).Google Scholar
7. Kreiskott, S., Arendt, P. N., Coulter, J. Y., Dowden, P. C., Foltyn, S. R., Gibbons, B. J., Matias, V., and Sheehan, C. J., Supercond. Sci. Technol. 17, S132–S134 (2004).Google Scholar
8. Güth, K., Hühne, R., Matias, V., Rowley, J., Thersleff, T., Schultz, L., and Holzapfel, B., IEEE Trans. Appl. Supercond. 19, accepted (2009).Google Scholar
9. Hühne, R., Selbmann, D., Eickemeyer, J., Hänisch, J., and Holzapfel, B., Supercond. Sci. Technol. 19, 169 (2006).Google Scholar
10. Fang, J. S., Hsu, T. P., and Chen, H. C., J. Electr. Mater. 36, 614 (2007).Google Scholar
11. Hühne, R., Güth, K., Kidszun, M., Kaltofen, R., Schultz, L., and Holzapfel, B., J. Phys. D: Appl. Phys. 41 (2008) 245404.Google Scholar