Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:00:06.453Z Has data issue: false hasContentIssue false

Development of Chalcogenide Thin Film Materials for Photoelectrochemical Hydrogen Production

Published online by Cambridge University Press:  07 October 2013

Nicolas Gaillard
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Dixit Prasher
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Jess Kaneshiro
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Stewart Mallory
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Marina Chong
Affiliation:
Hawaii Natural Energy Institute, University of Hawaii at Manoa, Honolulu, HI 96822, USA
Get access

Abstract

In the present communication, we report our efforts to integrate chalcogenide-based photoelectrochemical (PEC) materials into a standalone device capable of water-splitting using sunlight as the only source of energy. More specifically, the PEC performances of copper gallium diselenide are presented. First, a brief introduction to the material microstructural characteristics is presented. Then, the PEC properties are discussed, including incident-photonto-current efficiency (>60% in the visible), Faradaic efficiency (uncatalyzed, 86%) and durability (400 hours). Finally, we report the solar-to-hydrogen benchmark efficiency (3.7%) of a device made of a CuGaSe2 photocathode and a-Si solar cells measured in a 2-electrode configuration using a RuO2 counter electrode.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pinaud, B.A., Benck, J. D., Seitz, L. C., Forman, A. J., Chen, Z. et al. ., Energy Environ. Sci., 2013,6, 19832002.CrossRefGoogle Scholar
Jackson, P., Hariskos, D., Lotter, E., et al. ., Prog. Photovolt: Res. Appl. (2011) DOI:10.1002/pip. 1078.Google Scholar
Akhavan, V. A., Goodfellow, B. W., Panthani, M. G. et al. ., Journal of Solid State Chemistry 189 (2012) 212.CrossRefGoogle Scholar
Todorov, T. K., Reuter, K. B. and Mitzi, D. B., Adv. Mater. 2010, 22, E156E159.Google Scholar
Miller, E. L., Marsen, B., Paluselli, D. and Rocheleau, R., Electrochem. and Solid-State Lett. 8, A247A249 (2005).CrossRefGoogle Scholar
Kaneshiro, J., Gaillard, N., Rocheleau, R., Miller, E. L., Solar Energy Materials & Solar Cells 94 (2010), 12.16.CrossRefGoogle Scholar
Savadogo, O., Sol. Energy Mater. Sol. Cells 52 (1998) 361.CrossRefGoogle Scholar
Yokoyama, D., Minegishi, T., Maeda, K., Katayama, M., Kubota, J. et al. ., Electrochem. Comm. 12 (2010) 851853.CrossRefGoogle Scholar
Rocheleau, R. E., Miller, E. L., Misra, A., Energy & Fuels (1998), 12(1), 310.CrossRefGoogle Scholar
Chen, Z., Jaramillo, T. F., Deutsch, T. G., Kleiman-Shwarsctein, A. et al. ., J. Mat. Res. 25, 316 (2010).CrossRefGoogle Scholar
Bär, M., Bohne, W., Rohrich, J., Strub, E. et al. ., Appl. Phys. Lett. 96, 3857 (2004).Google Scholar
Marsen, B., Cole, B. and Miller, E. L., Solar Mat. And Solar Cells 92, 10541058 (2008).CrossRefGoogle Scholar
Moriya, M., Minegishi, T., Kumagai, H., Katayama, M. et al. ., J. Am. Chem. Soc. 2013, 135, 37333735.CrossRefGoogle Scholar