Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T14:03:43.861Z Has data issue: false hasContentIssue false

Development of a-SiC Thin Film Photoelectrodes and Hybrid PV/a-SiC Devices for Photoelectrochemical Water Splitting

Published online by Cambridge University Press:  24 October 2014

J. Hu
Affiliation:
MVSystems, Inc., Golden, Colorado 80401, USA
F. Zhu
Affiliation:
MVSystems, Inc., Golden, Colorado 80401, USA
A. Kunrath
Affiliation:
MVSystems, Inc., Golden, Colorado 80401, USA
N. Gaillard
Affiliation:
Hawaii Natural Energy Institute, Honolulu, Hawaii 96822, USA
Get access

Abstract

In this communication, we report our efforts to develop amorphous silicon carbide (a-SiC) thin film photoelectrodes integrated with Si solar cells to form a monolithic, hybrid photovoltaic (PV)/a-SiC device capable of water splitting using sunlight as the only energy source. The main photoelectrochemical (PEC) properties of both the a-SiC photoelectrode and complete hybrid device fabricated by the plasma enhanced chemical vapor deposition (PECVD) technique at low temperature (≤ 200°C) are discussed. The surface modification with metal nanoparticles, which is critical to PEC performances of the hybrid device, is also described. We show that, with the an a-SiC photoelectrode of p-i-n configuration and a high performance silicon heterojunction solar cell as driver, the photocurrent of the hybrid PV/a-SiC device has reached ∼5 mA/cm2. Additionally, the durability of such device has reached ∼800 hours in acidic electrolyte. Finally, we describe a roadmap for achieving the solar-to-hydrogen efficiency of >10% by optimizing the device configuration.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujishima, A. and Honda, K., Nature, 238, 37 (1972).10.1038/238037a0CrossRefGoogle Scholar
Miller, E.L., Rocheleau, R.E., Deng, X.M., International Journal of Hydrogen Energy, 28, 615 (2003).10.1016/S0360-3199(02)00144-1CrossRefGoogle Scholar
Zhu, F., Hu, J., Matulionis, I., Deutsch, T., Gaillard, N., Kunrath, A., Miller, E., and Madan, A., Philosophical Magazine, 89 (28-30), 2723 (2009).10.1080/14786430902740729CrossRefGoogle Scholar
Hu, J., Zhu, F., Matulionis, I., Deutsch, T., Gaillard, N., Miller, E., and Madan, A., Res. Soc. Symp. Proc. 1171, 1171–S03–05 (2009)10.1557/PROC-1171-S03-05CrossRefGoogle Scholar
Matulionis, I., Hu, J., Zhu, F., Gallon, J., Gaillard, N., Deutsch, T., Miller, E., and Madan, A., Proc. SPIE. 7770, 32 (2010).Google Scholar
Zhu, F., Matulionis, I., Gaillard, N., Chang, Y., Hu, J., Gallon, J., and Madan, A., Res. Soc. Symp. Proc. 1539, 1073 (2013).10.1557/opl.2013.1073CrossRefGoogle Scholar
Gaillard, N, Chang, Y, Kaneshiro, J, Deangelis, A, Miller, EL, SPIE Solar Hydrogen and Nanotechnology, Vol. 7770, 860970 (2010).Google Scholar
Staebler, D. L. and Wronski, C. R., Appl. Phys. Lett. 31, 292(1977)10.1063/1.89674CrossRefGoogle Scholar
Miller, E. L., DeAngelis, A., Mallory, S., Chapt. 7, “Multijunction Approaches to Photoelectrochemical Water Splitting” in Photoelectrochemical Hydrogen Production, Electronic Materials: Science & Technology, Vol.102, 2012, Springer.Google Scholar
Chen, Z., Dinh, H., and Miller, E., Photoelectrochemical Water Splitting – Standards, Experimental Methods, and Protocols”, Springer, 2013, Chapter 2, pp.13.10.1007/978-1-4614-8298-7CrossRefGoogle Scholar
Reece, S. Y., Hamel, J. A., Thomas, K. S., Jarvi, D., Esswein, A. J., Pijpers, J. J. H., Nocera, D. G., Science, 334, 645 (2011).10.1126/science.1209816CrossRefGoogle Scholar