Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:05:00.806Z Has data issue: false hasContentIssue false

Development of AIIBVI Semiconductors Doped with Cr for IRLaser Application

Published online by Cambridge University Press:  21 March 2011

V. A. Kasiyan
Affiliation:
Department of Materials Engineering, P.O.B. 653, Beer-Sheva 84105, Israel
R. Z. Shneck
Affiliation:
Department of Materials Engineering, P.O.B. 653, Beer-Sheva 84105, Israel
Z. M. Dashevsky
Affiliation:
Department of Materials Engineering, P.O.B. 653, Beer-Sheva 84105, Israel
S. R. Rotman
Affiliation:
Department of Electrical Engineering Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
Get access

Abstract

Electrical and optical measurements obtained with CdSe single crystals doped with chromium from a gas source CrSe over a wide temperature range (500–1050 °C) are compared with ZnSe annealed in liquid metal (Zn). These processes are intended to control the concentrations of the impurity and intrinsic defects. The low temperature annealing of CdSe crystals in CrSe atmosphere allows obtaining high electron mobility up to 9000 cm2/Vs at 80 K and demonstrates the low native defect concentration. A high temperature annealing gives rise to increased electron concentration with decreased mobility. Optical absorption measurements show that at the high annealing temperature effective doping with Cr takes place. The impurity absorption beyond the absorption edge is interpreted by the excitation of Cr++ and Cr+ deep levels

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Page, R. H., Schaffers, K. L., DeLoach, L.D., Wilke, G.D., Patel, F.D., Tassano, J.B., Payne, S.A., Krupke, W.F., Chen, K.-T., and Burger, A., IEEE J. Quantum Electron. 33, 609 (1997).Google Scholar
2. Schepler, K.L., Kuck, S., and Shozawa, L., J. Lumin. 72–74, 116 1997).Google Scholar
3. Bnaskar, S., Dobal, P. S., Rai, B. K., Katiyar, R. S., Bist, H. D., Ndap, J.-O., Burger, A., J. of Appl. Phys. 85, 439 (1999).Google Scholar
4. Godlevski, M. and Kaminska, M., J. Phys. C 13, 6537 (1980).Google Scholar
5. Li, M. Ming, Strachan, D. J., Ritter, T. M., Tamargo, M. and Weinstein, B. A., Phys. Rev. B 50, 4358 (1994).Google Scholar
6. Zunger, A., Solid State Physics 39, 275 (1986).Google Scholar
7. DeLoach, L. D., Page, R. H., D.Wilke, G., Payne, S. A., and Krupke, W.F., IEEE J. Quantum Electron. 32, 885 (1996).Google Scholar
8. Kasiyan, V. A., Nedeoglo, D. D., and Nedeoglo, N. D., Phys. Stat. Sol. (b) 210, 485 (1998).Google Scholar
9. Bond, W. L., J. Appl. Phys. 36, 1674 (1965).Google Scholar