Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T23:10:16.187Z Has data issue: false hasContentIssue false

Development of a Novel Metal Epitaxy Method towards Ni Based Electro-magnetic Hybrid Systems

Published online by Cambridge University Press:  01 February 2011

Akifumi Matsuda
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative and Engineered Materials, 4259-R3-6 Nagatsuta, Midori, Yokohama, Kanagawa, 226-8503, Japan, +81-45-924-5331, +81-45-924-5365
Masayasu Kasahara
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative and Engineered Materials, 4259-R3-6 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Takahiro Watanabe
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative and Engineered Materials, 4259-R3-6 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Wakana Hara
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative and Engineered Materials, 4259-R3-6 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Sei Otaka
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative and Engineered Materials, 4259-R3-6 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Kouji Koyama
Affiliation:
[email protected], Namiki Precision Jewel Co., Ltd., Crystal Growth Laboratory, 3-8-22 Shinden, Adachi, Tokyo, 123-8511, Japan
Mamoru Yoshimoto
Affiliation:
[email protected], Tokyo Institute of Technology, Department of Innovative and Engineered Materials, 4259-R3-6 Nagatsuta, Midori, Yokohama, 226-8503, Japan
Get access

Abstract

The epitaxial Ni (111) thin film on the oxide substrate could be obtained by a novel epitaxy method, employing pulsed laser deposition (PLD) of NiO (111) epitaxial film on the sapphire (α-Al2O3 single crystal) substrate and successive hydrogen reduction of NiO. The NiO (111) epitaxial film was deposited on the sapphire (0001) substrate at room-temperature by PLD, and then reduced into the Ni epitaxial film by annealing (300 °C to 500 °C) in the hydrogen-atmosphere. On the other hand, the polycrystalline Ni metal thin film was obtained by reduction of the polycrystalline NiO film, indicating necessity of epitaxial growth for the precursor oxide thin film in the metal epitaxy. The present epitaxy method suggests the possible formation of [Ni/α-Al2O3] epitaxial multilayer via selective reduction of oxide multilayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prinz, G. A., Science 282, 1660 (1998).Google Scholar
2. Sarma, S. D., Fabian, J., Hu, X., and Zutic, I., Superlattices Microstruct. 27, 95 (2000).Google Scholar
3. Boeck, J. D. and Borghs, G., Tech. Dig. Int. Elec. Dev. Meet. 215218 (1999).Google Scholar
4. Kumar, D., Zhou, H., Nath, T. K., Kvit, V., and Narayan, J., Appl. Phys. Lett. 79, 2817 (2001).Google Scholar
5. Debelle, A., Abadias, G., Michel, A., Jaouen, C., Guérin, P., Marteau, M., and Drouet, M., Mater. Res. Soc. Symp. Proc. 875, O14.4.1 (2005).Google Scholar
6. Kang, H. C., Seo, S. H., Jang, H. W., Kim, D. H., and Noh, D. Y., Appl. Phys. Lett. 83, 2139 (2003).Google Scholar
7. Lukaszew, R. A., Stoica, V., Uher, C., and Clarke, R., Mater. Res. Soc. Symp. Proc. 648, P3.29.1 (2001).Google Scholar
8. Zhang, Z., Lukaszew, R. A., Cionca, C., Pan, X., Clarke, R., Yeadon, M., Zambano, A., Walko, D., Dufresne, E., and Velthius, S. te, J. Vac. Sci. Technol. A 22, 1868 (2004).Google Scholar
9. Zhou, H., Kumar, D., Kvit, A., Tiwari, A., and Narayan, J., J. Appl. Phys. 94, 4841 (2003).Google Scholar
10. Evans, P., Scheck, C., Schad, R., and Zangari, G., J. Magn. Magn. Mater. 260, 467 (2003).Google Scholar
11. Rickard, J. M., Perdereau, M., and Dufour, L. C., IEEE Trans. Nucl. Sci. 1, 847 (1977).Google Scholar
12. Sasaki, A., Akiba, S., Matsuda, A., Hara, W., Sato, S., and Yoshimoto, M., Jpn. J. Appl. Phys. 44, L256 (2005).Google Scholar
13. Sakata, O., Takata, M., Suematsu, H., Matsuda, A., Akiba, S., Sasaki, A., and Yoshimoto, M., Appl. Phys. Lett. 84, 4239 (2004).Google Scholar
14. Akiba, S., Matsuda, A., Isa, H., kasahara, M., Sato, S., Watanabe, T., Hara, W., and Yoshimoto, M., Nanotechnol. 17, 4053 (2006).Google Scholar
15. Kakehi, Y., Nakao, S., Satoh, K., and Kusaka, T., J. Cryst. Growth 237–239, 591 (2002).Google Scholar
16. Gatel, C. and Snoeck, E., J. Magn. Magn. Mater. 272–276, e823 (2004).Google Scholar
17. Ohta, H., kamiya, M., Kamiya, T., Hirano, M., and Hosono, H., Thin Solid Films 445, 317 (2003).Google Scholar
18. Warot, B., Snoeck, E., Baules, P., Ousset, J. C., Casanove, M. J., Dubourg, S., and Bobo, J. F., J. Cryst. Growth 234, 704 (2002).Google Scholar
19. Luches, P., Groppo, E., D'Addata, S., Lamberti, C., Prestipino, C., Valeri, S., and Boscherini, F., Surf. Sci. 566–568, 84 (2004).Google Scholar
20. Maeda, T., Kim, S., Suga, T., Kurosaki, H., Yuasa, T., Yamada, U., Watanabe, T., Matsumoto, K., and Hirabayashi, I., Phys. C 357–360, 1042 (2001).Google Scholar
21. van der Heijden, P. A. A., Swuste, C. H. W., de Jonge, W. J. M., Gaines, J., van Eemeren, J. T. W. M., and Schep, K. M., Phys. Rev. Lett. 82, 1020 (1999).Google Scholar
22. Gupta, A., Braren, B., Casey, K. G., Hussey, B. W., and Kelly, R., Appl. Phys. Lett. 59, 1302 (1991).Google Scholar
23. Yoshimoto, M., Maeda, T., Ohnishi, T., Ishiyama, O., Shinohara, M., Kubo, M., Miura, R., Miyamoto, A., and Koinuma, H., Appl. Phys. Lett. 67, 2615 (1995).Google Scholar