Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:33:04.004Z Has data issue: false hasContentIssue false

Development of a Lab-on-a-Chip for the Characterization of Human Cells

Published online by Cambridge University Press:  01 February 2011

Peter Ertl
Affiliation:
[email protected], Austrian Research Centers (ARC), Nano-System-Technologies, Donau-City-Str. 1, Vienna, AL, 1220, Austria, +43 505504305, +43 50550 4399
Lukas Richter
Affiliation:
[email protected], Austrian Research Centers GmbH (ARC), Nano-System-Technologies, Donau-City-Str. 1, Vienna, 1220, Austria
Andy Mak
Affiliation:
[email protected], Austrian Research Centers GmbH (ARC), Nano-System-Technologies, Donau-City-Str. 1, Vienna, 1220, Austria
Christoph Stepper
Affiliation:
[email protected], Austrian Research Centers GmbH (ARC), Nano-System-Technologies, Donau-City-Str. 1, Vienna, 1220, Austria
Michael Kast
Affiliation:
[email protected], Austrian Research Centers GmbH (ARC), Nano-System-Technologies, Donau-City-Str. 1, Vienna, 1220, Austria
Hubert Brückl
Affiliation:
[email protected], Austrian Research Centers GmbH (ARC), Nano-System-Technologies, Donau-City-Str. 1, Vienna, 1220, Austria
Get access

Abstract

Microfabricated biochips are developed to continuously monitor cellular phenotype dynamics in a non-invasive manner. In the presented work we describe the novel combination of contact-less micro-dielectric sensors and microfluidics for quantitative cell analysis. The cell chip consists of a polymeric fluidic (PDMS) system bonded to a glass wafer containing the electrodes while temperature and fluid flow are controlled by external heating and pumping stations. Additionally, the cell chip contains an integrated reference arm providing a low-noise detection environment by eliminating background signals and interferences. The high-density interdigitated capacitors (µIDC) are designed to monitor living cells in a space of approximately 10 nL volume by controlling critical electrode characteristics, such as size, shape and passivation composition as well as thickness. The integrated µIDCs are isolated by a 300 nm multi-passivation layer of defined dielectric property and provide non-invasive, stable, robust and non-drifting measurement conditions. The performance of this detector is evaluated using various bacterial, yeast and mammalian cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Storz, G. and Hengge-Aronis, R., Bacterial Stress Responses (ASM Press, Washington D.C., 2000).Google Scholar
2. Coates, A. R. M., Dormancy and Low-Growth States in Microbial Disease (Cambridge University Press, Cambridge, 2003).Google Scholar
3. Breslauer, D. N., Lee, P. J., and Lee, L. P., Molec. BioSystems 2, 97112 (2006).Google Scholar
4. Weatherall, D. J., Nature Rev. Gen. 2, 245255 (2001).Google Scholar
5. Hirotada, M., Biochem, J.. Molec. Biol. 37, 8392 (2004).Google Scholar
6. Vilkner, T., Janasek, d., and Manz, A., Anal. Chem. 76, 33733386 (2004).Google Scholar
7. Auroux, P.-A., Iossifidis, D., Reyes, D. R., and Manz, A., Anal. Chem. 74, 26372652 (2002).Google Scholar
8. Whitesides, G. M., Nature Biotech. 21, 11611165 (2003).Google Scholar
9. Ionescu-Zanetti, C., Shaw, R. M., Seo, J., Jan, Y., Jan, L. Y., and Lee, L. P., PNAS U.S.A 102, 91129117 (2005).Google Scholar
10. Dittrich, P. S. and Manz, A., Nature 5, 210218 (2006).Google Scholar
11. Markx, G. H. and Davey, C. L., Enzyme Microb.Technol. 25, 161171 (1999).Google Scholar
12. Suehiro, J., Hamada, R., , m, Noutomi, D., Shutou, M., and Hara, M., J. Electrostat. 57, 157168 (2003).Google Scholar
13. Arndt, S., Seebach, J., Psathaki, K., Galla, H.-J., and Wegener, J., Biosens. Bioelectron. 19, 583594 (2004).Google Scholar
14. Gomez, R., Morisette, D. T., and Bashir, R., IEEE Micromechanical Systems 14, 829838 (2005).Google Scholar
15. Yeon, J. H. and Park, J.-K., Anal. Biochem. 341, 308315 (2005).Google Scholar
16. Yardley, J. E., Kell, D. B., Barrett, J., and Davey, C. L., Biotechnol. Genet. Eng. Rev. 17, 335 (2000).Google Scholar
17. Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., and Wolf, B., Med. Biol. Eng. Comp. 36, 365370 (1998).Google Scholar
18. Prodan, D., Mayo, F., Claycomb, J. R., and Miller, H. H., J. Appl. Phys. 95, 37543756 (2004).Google Scholar
19. Asami, K., J. of Non-Crystalline Solids 305, 268277 (2002).Google Scholar
20. Polevaya, Y., Ermolina, I., Schlesinger, M., Ginzburg, B. Z., and Felman, Y., Biochim. Biophys. Acta 1419, 257271 (1999).Google Scholar
21. Ciambrone, G. J., Liu, V. F., Lin, D. C., McGuinness, R. P., Leung, G. K., and Pitchford, S., J. Biomolec. Screening 9, 467480 (2004).Google Scholar
22. Gerwen, P. V., Laureyn, W., Laureys, W., Huyberechts, G., Beeck, M. O. De, Baert, K., Suls, J., Sansen, W., Jacobs, P., Hermans, L., and Mertens, R., Sens. Actuators B 49, 7380 (1998).Google Scholar
23. Igreja, R. and Dias, C. J., Sens. Actuators A 112, 291301 (2004).Google Scholar
24. Harrison, D. J., Manz, A., Fan, Z., Luedi, H., and Widmer, H. M., Anal. Chem. 64, 19261932 (1992).Google Scholar
25. Asami, K., Takashashi, K., and Shirahige, K., Yeast (2000).Google Scholar