Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:35:44.855Z Has data issue: false hasContentIssue false

Development and Application of Chen-Mobius Lattice Inversion Potential for Pd-Au Alloy

Published online by Cambridge University Press:  19 March 2012

Xianbao Duan
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
Zhengzheng Chen
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China
Neeti Kapur
Affiliation:
Nanostellar Inc, 3696 Haven Ave, Redwood City, CA 94063, U.S.A.
Xianghong Hao
Affiliation:
Nanostellar Inc, 3696 Haven Ave, Redwood City, CA 94063, U.S.A.
Kyeongjae Cho
Affiliation:
Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, U.S.A.
Bin Shan*
Affiliation:
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People’s Republic of China Nanostellar Inc, 3696 Haven Ave, Redwood City, CA 94063, U.S.A.
*
*Corresponding author: [email protected]
Get access

Abstract

Bimetallic Pd-Au nanoparticles have received much attention due to their potential applications in catalysis. We have developed a Pd-Au alloy potential based on Chen-Mobius lattice inversion method and applied it to the investigation of the melting of Pd-Au binary nanoparticles via molecular dynamics simulations. Our simulation results show the particle size dependence of the melting point and an enrichment of Au atoms to the surface near melting temperature.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Savastenko, N., Volpp, H. R., Gerlach, O., and Strehlau, W., Journal of Nanoparticle Research 10, 277 (2008).Google Scholar
2. Shan, B., Wang, L., Yang, S., Hyun, J., Kapur, N., Zhao, Y., Nicholas, J. B., and Cho, K., Phys Rev B 80, 35404 (2009).Google Scholar
3. Daw, M. S. and Foiles, S. M. and Baskes, M. I., Materials Science Reports 9, 251 (1993).Google Scholar
4. Erko, S., Physics Reports 278, 79 (1997).Google Scholar
5. Chen, N., Phys Rev Lett 64, 3203 (1990).Google Scholar
6. Nan-xian, C. and Zhao-dou, C. and Yu-chuan, W., Phys Rev E 55, R5 (1997).Google Scholar
7. Cai, J. and Hu, X. and Chen, N., J Phys Chem Solids 66, 1256 (2005).Google Scholar
8. Zhang, S. and Chen, N., Chem Phys 309, 309 (2005).Google Scholar
9. Zhang, S. and Chen, N., Phys Rev B 66, 64106 (2002).Google Scholar
10. Perdew, J. P. and Burke, K. and Ernzerhof, M., Phys Rev Lett 77, 3865 (1996).Google Scholar
11. Shinoda, W. and DeVane, R. and Klein, M. L., Soft Matter 4, 2454 (2008).Google Scholar
12. Klein, M. L. and Shinoda, W., Science 321, 798 (2008).Google Scholar
13. Alavi, S. and Thompson, D. L., The Journal of Physical Chemistry A 110, 1518 (2006).Google Scholar
14. Ding, F. and Bolton, K. and Rosén, A., The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics 34, 275 (2005).Google Scholar
15. Lindemann, F. A., Phys. Z. 11 (1910).Google Scholar
16. Bachels, T., Ntherodt, U. G, H., Sch, A., and Fer, R., Phys Rev Lett 85, 1250 (2000).Google Scholar
17. Shi, F. G., J Mater Res 9, 1307 (1994).Google Scholar