Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:41:43.133Z Has data issue: false hasContentIssue false

Determination of the Valence Band Offset in GaAs/(Ga,Al)As Superlattices by Hot Electron Excitation Spectroscopy

Published online by Cambridge University Press:  22 February 2011

H. Weinert
Affiliation:
Humboldt University Berlin, Department of Physics /IOS, Invalidenstr. 110, O-1040 Berlin, Germany
A. Zukauskas
Affiliation:
Vilnius University, Lithuania
V. Latinis
Affiliation:
Vilnius University, Lithuania
V. Stepankevicius
Affiliation:
Vilnius University, Lithuania
Get access

Abstract

A GaAs/Ga1−xA1xAs-superlattice was investigated using quasi-cw PL measurements at T=2 K. The relevant sample parameters were determined by X-ray diffraction: barrier thickness - 5 nm, qw-thickness - 5 nm, x = 0.41. A series of PL-spectra at medium, but constant excitation intensity for different excitation energy (from 1.64 eV to 2.1 eV) was measured. From the high-energy slope of the PL-spectra the electron-temperature Te was determined. A clearly structured dependence of Te on hvexc (excitation energy) was found. We assumed the pronounced structures of the Te - hvexc - hvexc - “spectrum” to be the onset-energies of new, for lower excitation energies not possible relaxation processes. Calculating the excess energy for each kind of carriers (heavy and light holes and electrons) separately, we found δEv=( 0.18 ± 0.05) ∆Eg for the investigated sample. Using this new experimental method one also is able to obtain the energies of higher electronic states (for example Γ → L -transitions) of GaAs/(Ga,Al)Assuperlattices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Stevenard, D., Vuillaume, D., Bourgoin, J. C., Deveaud, B., and Regreny, A., Europhys. Letters 2, 331(1986).Google Scholar
[2] Miller, R. C., Gossard, A. C., Kleinmann, D. A., and Muteanu, O., Phys. Rev B 29, 3740(1984).Google Scholar
[3] Smith, D. L., Rev.Mod. Phys. 62, 173(1990).Google Scholar
[4] Tejedor, C., Flores, F., J. Phys.C 11, L19(1978).Google Scholar
[5] Walle, C. G. Van Der, Martin, R. M., Phys. Rev. B 35, 8154(1987).Google Scholar
[6] Fu, Y., Chao, K. A., Phys. Rev. B 40, 8349(1989).Google Scholar
[7] Langer, J. M., and Heinrich, H., Phys. Rev. Letters 55, 1414(1985).Google Scholar
[8] Dingle, R., Wiegmann, W., and Henry, C. H., Phys. Rev. Lett. 33, 827(1974). R. Dingle, Adv. Solid State Phys., Vol. XV, Ed. H. J.Queisser, Pergamon/Vieweg, Braunschweig 1975 (p.21).Google Scholar
[9] Duggan, G., in: Heterojunction Band Discontinuities, Physics and Device Applications, Ed. by Capasso, F. and Margaritondo, G., Elsevier, Amsterdam 1987(p. 207).Google Scholar
[10] Chometre, A., Deveaud, B., Bandet, M., Auvray, P., and Regreny, R., J. Appl.Phys. 59, 3835(1986).Google Scholar
[11] Abstreiter, G., Prechtel, U., Weimann, G., and Schlapp, W., Physica 134B, 433(1985).Google Scholar
[12] Tai, K., Mysyrowicz, A., Fischer, R. J., Slusher, R. E., and Cho, A. Y., Phys. Rev. Letters 62, 1784(1989).Google Scholar
[13] Brohl, H.-G., Wiss. Z. Karl-Marx-Univ. Leipzig, Math.-Naturw. R 37, 623 (1988).Google Scholar
[14] Weinert, H., Zukauskas, A., Tamulaitis, G., Stepankevicius, V., physica status solidi (b) 153, K193(1989).Google Scholar
[15] Shah, J. and Leite, R. C. C., Phys. Rev. Letters 22, 1304(1969).Google Scholar
[16] Wong, K. B., Gell, M. A., Ninno, D., and Jaros, M., Phil. Mag. B52, L39(1985).Google Scholar