Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:37:18.500Z Has data issue: false hasContentIssue false

Determination of the Three-Dimensional Atomic Structure at Internal Interfaces by Electron Energy Loss Spectroscopy

Published online by Cambridge University Press:  10 February 2011

N. D. Browning
Affiliation:
Department of Physics, University of Illinois, Chicago, IL 60607–7059.
D. J. Wallis
Affiliation:
now at Defense Research Agency, Malvern, Worcs, England
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831–6030.
Get access

Abstract

The fine structure of a core-loss edge contains detailed information on the local atomic environment. It can be used as an extremely sensitive probe of the fluctuations in structure and bonding that can occur at internal interfaces. Interpretation of such fluctuations requires only a knowledge of the location of the electron probe when the spectrum is acquired and a means of interpreting the spectrum. The location of the probe can be controlled with atomic precision in the STEM by the use of the Z-contrast image, while the real space cluster methodology of multiple scattering analysis is ideally suited to the task of interpretation. This approach is used here to derive 3-dimensional models for tilt grain boundaries in TiO2 and SrTiO3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, Plenum, New York, 1996.Google Scholar
2. Browning, N. D., Chisholm, M. F. and Pennycook, S. J., Nature 366, 143 (1993).Google Scholar
3. Batson, P. E., Nature 366 727 (1993).Google Scholar
4. Wallis, D. J., Browning, N. D., Nellist, P. D., Pennycook, S. J., Majid, I., Liu, Y. and Vander Sande, J. B., J. Am. Ceram. Soc, in press.Google Scholar
5. Wallis, D. J. and Browning, N. D., J. Am. Ceram. Soc, in press.Google Scholar
6. Pennycook, S. J. & Jesson, D. E., Phys Rev Lett 64, 938 (1990).Google Scholar
7. Pennycook, S. J., Jesson, D. E. & Browning, N. D., Nucl. Instr. Meth. Phys. Res. B 96, 575 (1995).Google Scholar
8. Tossell, J. A., Geochem. Cosmochim Acta 37, 583 (1973).Google Scholar
9. Weng, X., Rez, P. & Sankey, O. F., Phys. Rev. B 40, 5694 (1989).Google Scholar
10. Koningsberger, D. C., X-ray absorption: Priciples. Applications, Techniques of EXAFS. SEXAFS and XANES. Eds. Koningsberger, DC and Prins, R, New York: Wiley, (1987).Google Scholar
11. Benfatto, M., Natoli, C. R., Bianconi, A., Garcia, J., Marcelli, A., Fanfoni, M. & Davoli, I., Phys. Rev. B 34, 5774 (1986).Google Scholar
12. Rehr, J. J., Albers, R. C. & Zabinsky, S. I., Phys. Rev. Letts 69, 3397 (1992).Google Scholar
13. Mattheiss, L., Phys. Rev. A 133, 1399 (1964).Google Scholar
14. Brydson, R., Sauer, H. and Engle, W., in Transmission Electron Energy Loss Spectrometry in Materials Science. Edited By Disko, M.M., Ahn, C.C. and Fultz, B., Warrendale, Penn 131154(1992).Google Scholar
15. McGibbon, M. M., Browning, N. D., Chisholm, M. F., McGibbon, A. J., Pennycook, S. J., Ravikumar, V. and Dravid, V. P., Science 266, 102 (1994).Google Scholar