Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:45:11.728Z Has data issue: false hasContentIssue false

Determination of the Strain Source in Mo/Ni Multilayers

Published online by Cambridge University Press:  21 February 2011

L.J. Chyung
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205
B.M. Clemens
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305–2205
S. Brennan
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford, CA 94305
Get access

Abstract

Structural characterization and strain measurements were conducted on Mo/Ni multilayers, with bilayer periods between 10 Å and 200 Å, utilizing symmetric, asymmetrin, and grazing incidence x-ray diffraction techniques. The structural difference between the 15 Å and 20 Å modulation wavelength samples, evident in the symmetric high angle diffraction spectra, is attributed to the absence of crystalline registry in the early stages of sputter deposition, yielding crystalline order only when the bilayer deposition thickness exceeded 15 Å. The dominant mechanism for the observed modulation wavelength dependent strain behavior, both in the growth direction and in the plane of the film, is consistent with a coherency strain model. The orientation relationship predicted for the Mo/Ni system, based on their atomic radii ratio is the Nishiyama-Wasserman relationship, (110)BCC//(111)FCCand[001]BCC//[101]FCC. This relationship would provide the source for the observed coherency strain.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, W. M. C., Tsakalakos, T., Hilliard, J. E., J. Appl. Phys. 48. (1977) p. 876.Google Scholar
2. Bisanti, P., Brodsky, M. B., Felcher, G. P., Grimsditch, M., and Sill, L. R., Phys. Rev. B. (1987) p. 7813.Google Scholar
3. Bell, J. A., Bennett, W. R., Zanoni, R., Stegeman, G. I., Falco, C. M., and Nizzoli, F., Phys. Rev. B 35 (1987) p. 4127.Google Scholar
4. Danner, R., Huebener, R. P., Chun, C. S. L., Grimsditch, M., and Schuller, I. K., Phys. Rev. B 33 (1986) p. 3696.Google Scholar
5. Khan, M. R., Chun, C. S. L., Felcher, G. P., Grimsditch, M., Kueny, A., Falco, C.M., and Schuller, I. K., Phys. Rev. B 27 (1983) p. 7186.Google Scholar
6. Kueny, A., Grimsditch, M., Miyano, K., Banerjee, I., Falco, C.M., and Schuller, I.K., Phys. Rev. Leat. 418 (1982) p. 166.Google Scholar
7. Clemens, B. M., Eesley, G. L., Phys. Rev. Lett 61 (20) (1988) p. 2356.Google Scholar
8. Bennett, W. R., Leavitt, J. A., and Falco, C. M., Phys. Rev. B 35 (9) (1987) p. 4199.Google Scholar
9. Clemens, B. M., Gay, J. G., Phys. Rev. B 5 (17) (1987) p. 9337.Google Scholar
10. Schuller, I. K., Rahman, A., Phys. Rev. Left. 50 (18) (1983)p. 1377.Google Scholar
11. Cammarata, R. C., Sieradzki, K., Phys. Rev. Lent. 62 (17) (1989) p. 2005.Google Scholar
12. Matthews, J. W., “Misfit Dislocations”, in Dislocations in Solids, Ed: Nabarro, F. R. N., North- Holland Publishing Co., Amsterdam (1979).Google Scholar
13. Gotoh, Y., Uwaha, M., J. Journal of Appl. Phys.26 (1) (1987) p. L17.Google Scholar