Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T08:00:49.561Z Has data issue: false hasContentIssue false

Determination of the Recombination Processes in Copper Ternary Chalcopyrites by Phototransport Measurements

Published online by Cambridge University Press:  10 February 2011

Y. Lubianmker
Affiliation:
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
G. Bitton
Affiliation:
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
I. Balberg
Affiliation:
Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
O. Resto
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931
S. Z. Weisz
Affiliation:
Department of Physics, University of Puerto Rico, Rio Piedras, PR 00931
Get access

Abstract

We have measured the phototransport properties of CuGaSe2 films as a function of temperature. The simplest model which is consistent with all the experimental results consists of two recombination levels, one of which is donor-like and the other is acceptor-like. This model is similar to the symmetrical two-level model, which we have recently suggested for CuInS2 films. We thus conclude that this model, with slight variations, represents the general recombination level structure in all copper ternary chalcopyrites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For recent developments see Proc. of the 9th Int. Conf. Ternary and Multinary Compounds, Jpn. J. Appl. Phys. 32 (Suppl. 32–3) (1993).Google Scholar
2. Bube, R.H., Photoelectronic Properties of Semiconductors (Cambridge University Press, Cambridge, 1992).Google Scholar
3. Dagan, G., Abou-Elfatouch, F., Donglary, D.J., Matson, R.J., Cahan, D., Chem. Mater. 2 286 (1990).Google Scholar
4. Lubianiker, Y., Bitton, G., Balberg, I., Walter, T., Schock, H.W., Resto, O., Weisz, S.Z., J. Appl. Phys. 79 876 (1996).Google Scholar
5. Herberholz, R., Walter, T., Schock, H.W., J. Appl. Phys. 76 2904 (1994).Google Scholar
6. Balberg, I., Matter. Res. Soc. Conf Proc. 258 693 (1992), and references therein.Google Scholar
7. Balberg, I., Lubianiker, Y., Phys. Rev. B 48 8709 (1993).Google Scholar
8. Balberg, I., J. Appl. Phys. 75 914 (1994).Google Scholar
9. Albin, D., Noufi, R., Tuttle, J., Goral, J., Risbud, S.H., J. Appl. Phys. 64 4903 (1988).Google Scholar
10. Balberg, I., Albin, D., Noufi, R., Appl. Phys. Lett. 54 1244 (1989).Google Scholar
11. Balberg, I., Albin, D., Noufi, R., Appl. Phys. Lett. 58 140 (1991).Google Scholar
12. Menner, R., Zweigart, S., Klenk, R., Schock, H.W., Ref 1, p. 45.Google Scholar
13. Bube, R.H., Solid State Electronics 27 467 (1984).Google Scholar
14. Sanyal, I., Chattopadhyay, K.K., Chaudhuri, S., Pal, A.K., Jour. Appl. Phys. 70 841 (1991).Google Scholar
15. Bacewicz, R., Dzierzega, A., Trykozko, R., Ref 1, p. 194.Google Scholar
16. Cantser, O.C., Kulyuk, L.L., Shemyakova, T.D., Siminel, A.V., Tezlevan, V.E., Ref 1, p. 630.Google Scholar
17. Herberholz, R., Walter, T., Schock, H.W., Proc. of the 10th Int. Conf Ternary and Multinary Compounds (1995), in press.Google Scholar