Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-20T09:25:45.888Z Has data issue: false hasContentIssue false

Determination of the Density of States in a-SiC:H from Transient Photoconductivity

Published online by Cambridge University Press:  10 February 2011

R. Brüggemann
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
C. Maint
Affiliation:
Dept. of Electrical Engineering, University of Abertay Dundee, Bell St, Dundee, Scotland
M. Rösch
Affiliation:
FB Physik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, F.R. Germany
D. P. Webb
Affiliation:
Dept. of Electrical Engineering, University of Abertay Dundee, Bell St, Dundee, Scotland
Get access

Abstract

In order to fill the gap of little knowledge about their details, the density of states distributions (DOS) in the upper half of the band gap were determined for a series of wellcharacterised amorphous hydrogenated silicon carbide samples with Tauc gaps between 1.78 and 1.94 eV. A DOS spectroscopic technique, based on the Fourier transform of time-sampled transient photocurrents, allowed the DOS determination on an absolute scale for a wide energy range. The DOS increases in the band tail region with carbon content. It exhibits a minimum at about 0.5 eV which is followed by a defect structure at deeper energies, the density of which also increases with C-content. We find a decreasing time-dependent drift mobility for larger C-content consistent with the lower transit time-determined drift mobility in time-of-flight.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Neidlinger, T., Schubert, M. B., Brummack, H., Schmid, G., this volume.Google Scholar
2. Mohring, H. D., Abel, C.-D., Briiggemann, R., Bauer, G. H., J. Non-Cryst. Sol. 137 & 138, 847 (1991).Google Scholar
3. Mohring, H. D., Schumm, G., Bauer, G. H., in Conf. Record 21st IEEE Photovoltaics Specialists Conf. (IEEE, New York, 1991), p. 1375.Google Scholar
4. Li, Y.-M., Jackson, F., Arya, R. R., in Conf. Record 23rd IEEE Photovoltaics Specialists Conf. (IEEE, New York, 1993), p. 850.Google Scholar
5. Zedlitz, R., Lotter, E., Heintze, M., J. of Non-Cryst. Sol. 164–166, 1031 (1993).Google Scholar
6. Adriaenssens, G., in Electronic and optoelectronic materials for the 21st century, Ed. Marshall, J.M. et al. (World Scientific, Singapore, 1993), p. 129.Google Scholar
7. Demichelis, F., Solid State Phenomena 44–46, 385 (1995).Google Scholar
8. Liedtke, S., Jahn, K., Finger, F., Fubs, W., J. Non-Cryst. Sol. 97 & 98, 1083 (1987).Google Scholar
9. Bayley, P. A., Browne, A. K., Marshall, J. M., van Swaaij, R. A. C. M. M., Hepburn, A. R., J. Non-Cryst. Sol. 164–166, 521 (1993).Google Scholar
10. Wang, Q., Schiff, E. A., Li, Y.-M., in Amorphous Silicon Technology - 1993, ed. Schiff, E. A. et al., MRS Symposium Proceedings (MRS, Pittsburgh, 1993) 297 p. 419.Google Scholar
11. Bayley, P. A., Marshall, J. M., Hepburn, A. R., van Swaaij, R. A. C. M. M., Bezemer, J., in Electronic, Optoelectronic and Magnetic Thin Films, ed. Marshall, J. M. et al. (Research Studies Press, Taunton, UK, 1995), p. 440.Google Scholar
12. Gu, Q., Wang, Q., Schiff, E. A., Li, Y.-M., Malone, C. T. in Amorphous Silicon Technology - 1994, ed. Schiff, E. A. et al., MRS Symposium Proceedings (MRS, Pittsburgh, 1994) 336 p. 523.Google Scholar
13. Gu, Q., Wang, Q., Schiff, E. A., Li, Y.-M., Malone, C. T., J. Appl. Phys. 76, 2310 (1994).Google Scholar
14. Brüggemann, R., PhD Thesis, Philipps-Universitit Marburg (1993).Google Scholar
15. Brüggemann, R., joint DAAD and British Council ARC-project, Universitht Stuttgart - University of Abertay Dundee, unpublished.Google Scholar
16. Brüggemann, R., Main, C., Berkin, J., Reynolds, S., Phil. Mag. B 62, 29 (1990).Google Scholar
17. Main, C., Brüggemann, R., Webb, D. P., Reynolds, S., Sol. State Comm. 83, 401 (1992).Google Scholar
18. Main, C., Webb, D. P., Reynolds, S., in Electronic, Optoelectronic and Magnetic Thin Films, ed. Marshall, J. M. et al. (Research Studies Press, Taunton, UK, 1995), p. 12.Google Scholar
19. Transmission-evaluation programme IR, E. Lotter, Universittt Stuttgart, 1991, unpublished.Google Scholar
20. Webb, D. P., Main, C., Reynolds, S., Brüggemann, R., in Proc. of 12th Eur. Photovoltaic Solar Energy Con., Ed. Hill, R. et al. (H.S.Stephens & Associates, Bedford, 1994), p. 124.Google Scholar
21. Webb, D. P., PhD thesis, University of Abertay Dundee, 1994.Google Scholar
22. Briiggemann, R., Solid State Phenomena 44–46, p. 505.Google Scholar
23. Schiff, E. A., in Tetrahedally-Bonded Amorphous Semiconductors, ed. Adler, D., Fritzsche, H., (Plenum, New York, 1985), p. 357.Google Scholar
24. Main, C., Brüggemann, R., Webb, D. P., Reynolds, S., J. Non-Cryst. Sol. 164–166, 481 1993).Google Scholar
25. Anotoniadis, H., Schiff, E. A., Phys. Rev. B 46, 9842 (1992).Google Scholar
26. Bayley, P. A., Browne, A. K., Marshall, J. M., Swaaij, R. A. C. M. M.van, Hepburn, A. R., J. Non-Cryst. Sol., in print, (1996).Google Scholar