Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T07:32:40.473Z Has data issue: false hasContentIssue false

Determination of Energy Minima for Dissimilar Metal Interfaces

Published online by Cambridge University Press:  15 February 2011

Paul Shewmon
Affiliation:
Matl. Sci. & Engr., Ohio State Univ., Columbus, OH 43210
Suliman Dregia
Affiliation:
Matl. Sci. & Engr., Ohio State Univ., Columbus, OH 43210
Get access

Abstract

Relative orientations which correspond to minimum energy can be found by particle rotation methods, both for particles on free surface and particles inside a solid. For common fcc metals (Ni,Ag,Cu,Ag) the minimum energy orientations predicted by Embedded Atom Method calculations correspond well with experimental observations. Epitaxial studies of growth on (001)Cu and (111)Cu show the observed orientation relationships of vapor deposited Ag and Au are consistent with EAM calculations and the limited particle rotation experiments available.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Kronberg, M. L. and Wilson, F. H., Trans. A.I.M.E., 185, 501 (1949).Google Scholar
[2] Brandon, D.G., Ralph, B., Ranganathan, S., Wald, M.S., Acta Metal., 12, 813 (1964).Google Scholar
[3] Wolf, D., Acta Metall., 32, 735 (1984).Google Scholar
[4] Fecht, H. J. and Gleiter, H., Acta Metall., 33, 557 (1985).Google Scholar
[5] Sutton, A. P. and Balluffi, R. W., Acta Metall., 35, 2177 (1987).Google Scholar
[6] Shewmon, P. G., in Recrystallization. Grain Growth and Textures, ASM, Metals Park, OH (1966), p. 165.Google Scholar
[7] Chan, Siu-Wai and Balluffi, R. W., Acta metall., (a) 33, 1113 (1985); and (b) 34, 2191 (1986).Google Scholar
[8] Herrmann, G., Gleiter, H. and Baro, G., Acta Metall., 24, 353 (1976).Google Scholar
[9] Sautter, H., Gleiter, H. and Baro, G., Acta Metall., 25, 467 (1977).Google Scholar
[10] Gao, Y., Shewmon, P. G. and Dregia, S. A., Acta Metall., 37, 1627–36 (1989).Google Scholar
[11] Ringer, S.P., Li, W.B., and Easterling, K.E., Acta Metal., 37, 831–41 (1989).Google Scholar
[12] Aaronson, H. I. and Lee, H. J., “Influence of Recrystallization on Orientation Relationships and Interfacial Structure During Eutectoid Decomposition in a Ti-Ni Alloy,” Abstract, TMS Annual Meeting, Las Vegas, March, 1989.Google Scholar
[13] Epitaxial Growth (A&B), Ed. Matthews, J. W. (Academic Press, London, 1975).Google Scholar
[14] Shirokoff, J., Cheung, J., Erb, U., Acta Metal., 38 1272–78 (1990).CrossRefGoogle Scholar
[15] Foiles, S.M., Baskes, M.I., Daw, M.S., Phys. Rev. B, 33, 7983 (1983).Google Scholar
[16] Dregia, S. A., Wynblatt, P. and Bauer, C. L., Mat. Res. Soc. Symp. Proc., 94, 111 (1987).CrossRefGoogle Scholar
[17] Gao, Y., Dregia, S. A. and Shewmon, P. G., Acta Metal., 37 (1989) 3165–76.Google Scholar
[18] Maurer, R. and Fischmeister, H., “Low Energy Heterophase Boundaries in The System Ag/Ni and in Other Weakly Bonded Systems,” Acta Metall., 37, 1177(1989).Google Scholar
[19] Grovenor, C. R. M., Sutton, A. P. and Smith, D. A., “Epitaxy of bcc Metals on fcc(001) Substrates,” Scripta Metall., 18, 939(1984).CrossRefGoogle Scholar
[20] Smith, D. A., Segmueller, A. and Taranko, A. R., “Orientation Relationships between boc Deposits and fcc Substrates, Mat. Res. Soc. Symp. Proc., 94, 127(1987).Google Scholar
[21] Tan, E. K. and Dregia, S. A., submitted to J. Mat. Res.Google Scholar