Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T17:37:09.120Z Has data issue: false hasContentIssue false

Design of New Copolymers for Photonics Applications: Incorporation of Nlo-Active Chromophores with Well-Defined Conjugation Lengths

Published online by Cambridge University Press:  10 February 2011

Charles W. Spangler
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115-2862
Mingqian He
Affiliation:
Department of Chemistry, Northern Illinois University, DeKalb, IL 60115-2862
Get access

Abstract

Electroactive polymers such as poly [p-phenylene vinylene] (PPV) and poly [2,5-thienylene vinylene] (PTV) have been shown to yield highly conductive materials upon oxidative doping,1 and to display enhanced third order nonlinear optical response.2 Optical absorption spectra for either neutral or doped polymers, however, are quite broad, extending well into the visible for the neutral polymer and into the near infrared (NIR) for the doped polymers, with little evident fine structure. For certain nonlinear optical (NLO) applications, this can lead to undesirable absorption losses and resonance phenomena. We would like to describe how copolymers incorporating oligomeric dithienylpolyene segments may be designed so as to give some degree of control over the polymer absorption characteristics in either neutral or oxidized form.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Handbook of Conducting Polymers, Vol.1 and 2, edited by Skotheim, T., Marcel Dekker, New York, 1986.Google Scholar
2. Prasad, P. N. and Williams, D. J., Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley-Interscience, New York, 1991.Google Scholar
3. Gagnon, D. R., Capistan, J. D., Karasz, F. E., Lenz, R. W. and Antoun, S., Polymer 28, 587 (1987).Google Scholar
4. Elsenbaumer, R. L., Jen, A. K.-Y. and Miller, G. G., J. Chem. Soc., Chem. Commun., 1346 (1986).Google Scholar
5. Spangler, C. W., Liu, P.-K., Hall, T. J., Polis, D. W., Sapochak, L. S. and Dalton, L. R., Polymer 33, 937 (1992).Google Scholar
6. Spangler, C. W., Thurmond, J. W., Li, H., He, M., Ghosal, S., Zhang, Y., Casstevens, M. K. and Burzynski, R., Proc. SPWE 2528, 46 (1995).Google Scholar
7. Spangler, C. W., He, M. Q., Laquindanum, J., Dalton, L., Tang, N., Partanen, J. and Hellwarth, R. in Electrical, Optical and Magnetic Properties of Organic Solid State Materials, edited by Garito, A. F., Jen, A. K.-Y., Lee, C. Y.-C. and Dalton, L. R. (Mater. Res. Soc. Proc. 328, Pittsburgh, PA, 1994), pp. 655660.Google Scholar
8. Tang, N., Partanen, J. P., Hellwarth, R. W., Laquindanum, J., Dalton, L. R., He, M. Q. and Spangler, C. W., Proc. SPIE 2285, 1861 (1994).Google Scholar
9. de Melo, C. P. and Silbey, R., Chem. Phys. Lett. 140, 537 (1987).Google Scholar
10. de Melo, C. P. and Silbey, R., J. Chem. Phys. 88, 2567 (1988).Google Scholar
11. Malliaras, G. G., Herrema, J. K., Wildeman, J., Wieringa, R. H., Gill, R. E., Lampouraand, S. S. Hadziioannou, G., Adv. Mater. 5, 721 (1993).Google Scholar
12. Spangler, C. W., Liu, P.-K., Dembek, A. A. and Havelka, K. O., I. Chem. Soc., Perkin Trans. 1, 799 (1991).Google Scholar
13. Spangler, C. W. and Liu, P.-K., J. Chem. Soc., Perkin Trans. 2, 1959 (1992).Google Scholar
14. Yang, Z., Sokolik, I. and Karasz, F. E., Macromol. 26, 1188 (1993).Google Scholar
15. Zyung, T., Hwang, D.-H., Kang, I.-N., Shim, H.-K., Hwang, W.-Y. and Kim, J.-J., Chem. Mater. 7, 1499 (1995).Google Scholar
16. Dalton, L. R. in Nonlinear andElectroactive Polymers, edited by Prasad, P. N. and Ulrich, D. R. (Plenum Press, New York, 1988), pp. 243271.Google Scholar