Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:17:39.127Z Has data issue: false hasContentIssue false

Design and Properties of a Thin-Film, Mems-Based Magnetostrictive Magnetometer

Published online by Cambridge University Press:  15 February 2011

T. J. Kistenmacher
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
R. Osiander
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
S. A. Ecelberger
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
R. B. Givens
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
D. K. Wickenden
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
J. C. Murphy
Affiliation:
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723–6099
Get access

Abstract

The principles of operation of a MEMS-based magnetometer designed on the magnetoelastic effect are described. The active transduction element is a commercial (001) silicon microcantilever sputter coated with an amorphous thin film of the giant magnetostrictive alloy Terfenol-D [(Dy0.7Tb0.3)Fe2]. The easy axis of magnetization of the Terfenol-D film lies in the plane of the microcantilever and along the acicular direction. In addition to the magnetostrictive transducer, basic components include: (a) mechanical resonance of the coated-microcantilever through coupling to an ac magnetic field; and, (b) detection by optical beam deflection of the microcantilever motion utilizing a laser diode source and a position-sensitive detector. The sensitivity of this magnetostrictive magnetometer is currently 1 μT, which is three orders of magnitude better than a magnetometer based on a similar-sized piezoresistive cantilever.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Givens, R. B., Murphy, J. C., Osiander, R., Kistenmacher, T. J., and Wickenden, D. K., Appl. Phys. Lett. 69, 2755 (1996)Google Scholar
[2] Osiander, R., Ecelberger, S. A., Givens, R. B., Wickenden, D. K., Murphy, J. C., and Kistenmacher, T. J., Appl. Phys. Lett. 69, 2930 (1996)Google Scholar
[3] See, for example, Clark, A. E., in Ferromagnetic Materials, edited by Wohlfahrt, E. P. (North-Holland, Amsterdam, 1980), p. 531; R. D. Greenough, M. P. Schultz, A. G. I. Jenner, and A. J. Wilkinson, IEEE Trans. Magn. 27, 5346 (1991); J. M. Vranish, D. P. Naik, J. B. Resteroff, and J. P. Teter, p. 5355; R. Chung, R. Weber, and D. C. Jiles, p. 5358.Google Scholar
[4] See, for example: Mermelstein, M. D. and Dandridge, A., Appl. Phys. Lett. 51, 545 (1987).Google Scholar
[5] See, for example: Honda, T., Arai, K. I., and Yamaguchi, M., J. Appl. Phys. 76, 6994 (1994); E. Quant, B. Gerlach, and K. Seeman, J. Appl. Phys. ,p. 7000.Google Scholar
[6] Schatz, F., Hirscher, M., Schnell, M., Flik, G., and Kronmuller, H., J. Appl. Phys. 76, 5380 (1994).Google Scholar
[7] Rossel, C., Bauer, P., Zech, D., Hofer, J., Willemin, M., and Keller, H., J. Appl. Phys. 79,Google Scholar