Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T09:02:01.686Z Has data issue: false hasContentIssue false

Depth-Resolved Microspectroscopy of Porous Silicon Multilayers

Published online by Cambridge University Press:  10 February 2011

S. Manotas
Affiliation:
Materials Science Institute of Madrid (CSIC), Cantoblanco, E-28049 Madrid, Spain
F. Agulló-Rueda
Affiliation:
Materials Science Institute of Madrid (CSIC), Cantoblanco, E-28049 Madrid, Spain
J. D. Moreno
Affiliation:
Department of Applied Physics, Autonomous University, Cantoblanco, E-28049 Madrid, Spain
R. J. Martín-Palma
Affiliation:
Department of Applied Physics, Autonomous University, Cantoblanco, E-28049 Madrid, Spain
R. Guerrero-Lemus
Affiliation:
Department of Applied Physics, Autonomous University, Cantoblanco, E-28049 Madrid, Spain
J. M. Martínez-Duart
Affiliation:
Department of Applied Physics, Autonomous University, Cantoblanco, E-28049 Madrid, Spain
Get access

Abstract

We have measured micro-photoluminescence (PL) and micro-Raman spectra on the cross section of porous silicon multilayers to sample different layer depths. We find noticeable differences in the spectra of layers with different porosity, as expected from the quantum confinement of electrons and phonons in silicon nanocrystals with different average sizes. The PL emission band gets stronger, blue shifts, and narrows at the high porosity layers. The average size can be estimated from the shift. The Raman phonon band at 520 cm−1 weakens and broadens asymmetrically towards the low energy side. The line shape can be related quantitatively with the average size by the phonon confinement model. To get a good agreement with the model we add a band at around 480 cm−1, which has been attributed to amorphous silicon. We also have to leave as free parameters the bulk silicon phonon frequency and its line width, which depend on temperature and stress. We reduced laser power to eliminate heating effects. Then we use the change of frequency with depth to monitor the stress. At the interface with the substrate we find a compressive stress in excess of 10 kbar, which agrees with the reported lattice mismatch. Finally, average sizes are larger than those estimated from PL.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Canham, L. T., Appl. Phys. Lett. 57, 1046(1990).Google Scholar
[2] Frohnhoff, S. and Berger, M. G., “Porous Silicon Superlattices,” Adv. Mater. 6, 963(1994).Google Scholar
[3] Berger, M. G., Tonissen, M., Arens-Fischer, R., Münder, H., Luth, H., Arntzen, M., and Their, W., Thin Solid Films 255, 313(1995).Google Scholar
[4] Loni, A., Canham, L. T., Berger, M., Arens-Fischer, R., Munder, H., Lüth, H., and Benson, H. F. A. T. M., Thin Solid Films 276, 143(1996).Google Scholar
[5] Pellegrini, V., Tredicucci, A., Mazzoleni, C., and Pavesi, L., Phys. Rev. B 52, 14328(1995).Google Scholar
[6] Kozlowski, F. and Lang, W., J. Appl. Phys. 72, 5401(1993).Google Scholar
[7] Moreno, J. D., Agulló-Rueda, F., Montoya, E., Marcos, M. L., González-Velasco, J., Guerrero-Lemus, R., and Martínez-Duart, J. M. Appl. Phys. Lett. 71, 2166(1997).Google Scholar
[8] Thönissen, M., Berger, M. G., Billat, S., Arens-Fischer, R., Krüger, M., Lüth, H., Hillbrich, W. T. S., Grosse, P., Lerondel, G., and Frotscher, U., Thin Solid Films 297, 92(1997).Google Scholar
[9] Maehama, T., Afuso, C., and Itoh, N., Jpn. J. Appl. Phys. P- 137, 998(1998).Google Scholar
[10] Berger, M. G., Frohnhoff, S., Theiss, W., Rossow, U., and Münder, H., in Porous Silicon Science and Technology, Vial, J.-C. and Derrien, J., eds., (Les Editions de Physique-Springer, 1995).Google Scholar
[11] Hilbrich, S., Arens-Fischer, W. T. R., GMtick, O., and Berger, M. G., Thin Solid Films 276, 231(1996).Google Scholar
[12] Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024(1993).Google Scholar
[13] Calcott, P. D. J., in Properties of Porous Silicon, Canham, L. T., ed., (The Institution of Electrical Engineers, 1997), p. 203.Google Scholar
[14] Goodes, S. R., Jenkins, T. E., Beale, M. I. J., Benjamin, J. D., and Pickering, C., Semicond. Sci. Technol. 3, 483(1988).Google Scholar
[15] Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60, 112(1992).Google Scholar
[16] Sui, Z., Leong, P. P, Herman, I. P., Higashi, G. S., and Temkin, H., Appl. Phys. Lett. 60, 2086(1992).Google Scholar
[17] Tsang, J. C., Tischler, M. A., and Collins, R. T., Appl. Phys. Lett. 60, 2279(1992).Google Scholar
[18] Nemanich, R. J., Solin, A., and Martin, R. M., Phys. Rev. B 23, 6348(1981).Google Scholar
[19] Richter, H., Wang, Z. P., and Ley, L., Solid State Comm. 39, 625(1981).Google Scholar
[20] Campbell, I. H. and Fauchet, P. M., Solid State Comm. 58, 739(1986).Google Scholar
[21] Hart, T. R., Aggarwal, R. L., and Lax, B., Phys. Rev. B 1, 638(1970).Google Scholar
[22] Anastassakis, E., Pinczuk, A., Burstein, E., Pollak, F. H., and Cardona, M., Solid State Comm. 8, 133(1970).Google Scholar
[23] Barla, K., Herino, R., Bomchil, G., Pfister, J. C., and Freund, A., J. Cryst. Growth 68, 727(1984).Google Scholar
[24] Bellet, D. and Dolino, G., Thin Solid Films 276, 1 (1996).Google Scholar
[25] Sugiyama, H. and Nittono, O., J. Cryst. Growth 103, 156(1990).Google Scholar
[26] Münder, H., Andrzejak, C., Berger, M. G., Klemradt, U., Lüth, H., Herino, R., and Ligeon, M., Thin Solid Films 221, 27(1992).Google Scholar