Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:56:27.971Z Has data issue: false hasContentIssue false

The Depth Resolution of Dynamic Sims: Experiments and Calculations

Published online by Cambridge University Press:  25 February 2011

M. D. Giles
Affiliation:
AT & T Bell Laboratories, Murray Hill, NJ 07974
J. L. Hoyt
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
J. F. Gibbons
Affiliation:
Stanford Electronics Laboratories, Stanford, CA 94305
Get access

Abstract

This study is concerned with the fundamental limitations imposed by cascade mixing and recoil implantation on the depth resolution of secondary ion mass spectrometry (SIMS), and the effects of these limitations on the determination of impurity profiles in semiconductors.

We present experimental results of measurements on atomically, or near atomically abrupt impurity profiles in Si using magnetic sector (Cameca) and quadrupole (Atomica) SIMS machines. The analysis conditions and samples have been chosen to minimize instrument (crater wall resputtering) and surface (equilibration time) effects. Under such conditions the leading edge of an abrupt signal is smeared to a complimentary error function, while the trailing edge exhibits an exponential decay reminiscent of recoil implantation profiles.

Modifications of the Boltzmann Transport Equation (BTE) approach to ion implantation in multilayer targets will be shown to provide a first principles calculation of such SIMS knock-on phenomena, which is in good agreement with the empirical results.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wittmaack, K., Vacuum 34,119 (1984).CrossRefGoogle Scholar
2. Schulz, F., Wittmaack, K., Maul, J., Rad. Effects, 18, 211 (1973).CrossRefGoogle Scholar
3. Shepherd, F.R., Robinson, W.H., Brown, J.D., and Phillips, B.F., J. Vac. Sci. Technol. A 1,991 (1983).Google Scholar
4. Vandervorst, W., Maes, H.E., DeKeersmaecker, R.F., J. Appl. Phys. 56,1425 (1984).Google Scholar
5. Anderson, H.H., Appl. Phys. 18,131 (1979).CrossRefGoogle Scholar
6. Sigmund, P., Phys. Rev. 184,383 (1969).CrossRefGoogle Scholar
7. Sigmund, P. and Gras-Marti, A., Nucl. Instr. Meth. 168, 389 (1980).Google Scholar
8. Sigmund, P. and Gras-Marti, A., Nucl. Instr. Meth. 182/183, 25 (1981).Google Scholar
9. Ishitani, T. and Shimizu, R., Appl. Phys 6,241 (1975).CrossRefGoogle Scholar
10. Littmark, U. and Hofer, W.O., Nucl. Instr. Meth. 168, 329 (1980).Google Scholar
11. Remmerie, J. and Maes, H.E., Spectrochimica Acta 40B, 787 (1985).Google Scholar
12. Christel, L.A., Gibbons, J.F., and Mylroie, S., J. Appl. Phys. 51,6176 (1980).Google Scholar
13. Gibbons, J.F., Gronet, C.M., and Williams, K.E., Appl. Phys. Lett. 47,721 (1985).Google Scholar
14. Gibbons, J.F, Johnson, W.S., and Mylroie, S.W., Projected Range Statistics: Semiconductors and Related Materials, Second Edition, (Halsted Press, New York, 1975).Google Scholar
15. Giles, M.D. and Gibbons, J.F., Nucl. Instr. Meth. 209/210, 33 (1983).Google Scholar
16. Christel, L.A., Gibbons, J.F., and Mylroie, S., Nucl. Instr. Meth. 182/183, 187 (1981).CrossRefGoogle Scholar