Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T06:34:08.468Z Has data issue: false hasContentIssue false

Depth Profiles of Medium Energy Phosphorus Implants into Silicon

Published online by Cambridge University Press:  21 February 2011

J. P. Lavine
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
L. Zheng
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
P. M. Whalen
Affiliation:
Microelectronics Technology Division, Eastman Kodak Company, Rochester, NY 14650-2008
D. F. Downey
Affiliation:
Varian Ion Implant Systems, Gloucester, MA 01930-2297
Get access

Abstract

Secondary ion mass spectrometry (SIMS) is used to produce depth profiles of ion-implanted phosphorus in silicon. The implant energies are 250, 500, and 750 keV, and there is a 0.06-μm thick oxide on the silicon. The experimental profiles are compared with predictions from a variety of simulation programs, most of which give larger projected ranges than the data. The silicon crystal structure needs to be included in the calculations to produce projected ranges and depth profiles that agree with the present experimental data and with data from the literature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Borland, J. O. and Koelsch, R., Solid State Technol. 36, no. 12, pp. 2835 (1993).Google Scholar
2 Prall, K. and Schenk, R., IEEE Electron Dev. Lett. 15, 163 (1994).Google Scholar
3 Agarwal, A., Koveshnikov, S., Christensen, K., and Rozgonyi, G. A., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N. M., and Sopori, B. L. (Mater. Res. Soc. Symp. Proc. 378, Pittsburgh, PA, 1995), pp. 7176.Google Scholar
4 Wong, H., Deng, E., Cheung, N. W., Chu, P. K., Strathman, E. M., and Strathman, M. D., Nucl. Instrum. Meth. Phys. Res. B21, 447 (1987).Google Scholar
5 Oosterhoff, S., Nucl. Instrum. Meth. Phys. Res. B30, 1 (1988).Google Scholar
6 Ingram, D. C., Baker, J. A., and Walsh, D. A., Nucl. Instrum. Methods Phys. Res. B7/8, 361 (1985).Google Scholar
7 Wilson, R. G., J. Appi. Phys. 60, 2797 (1986).Google Scholar
8 Raineri, V., Setola, R., Priolo, F., Rimini, E., and Galvagno, G., Phys. Rev. B 44, 10568 (1991).Google Scholar
9 Simonton, R. and Tasch, A. F., in Handbook of Ion Implantation Technology, edited by Ziegler, J. F. (North-Holland, Amsterdam, 1992), pp.119222.Google Scholar
10 Ziegler, J. F. and Lever, R. F., Appi. Phys. Lett. 46, 358 (1985).Google Scholar
11 PROFILE, Version 3.0, of Implant Sciences Corporation, Wakefield, MA 01880-1246.Google Scholar
12 Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon Press, New York, 1985).Google Scholar
13 TSUPREM-3, Version 6.1.1, of Technology Modeling Associates, Palo Alto, CA 94303-4605.Google Scholar
14 Spinelli, P., Cartier, A. M., and Bruel, M., Nucl. Instrum. Methods Phys. Res. B21, 452 (1987).Google Scholar