Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-14T02:45:24.098Z Has data issue: false hasContentIssue false

Deposition Profile Simulation: Topological Effects

Published online by Cambridge University Press:  15 February 2011

Yun Biao Wang
Affiliation:
Institut de Science et de Génie des Matériaux et Procédés, CNRS-UPR8521, Université, Avenue de Villeneuve, F-66860 Perpignan Cedex, France.
Francis Teyssandier
Affiliation:
Institut de Science et de Génie des Matériaux et Procédés, CNRS-UPR8521, Université, Avenue de Villeneuve, F-66860 Perpignan Cedex, France.
Get access

Abstract

There is a considerable amount of evidence for the dependence of microstructure and surface morphology of films obtained by conventional thermally activated chemical vapor deposition on mass transport phenomena. This paper addresses the simulation of the influence of conveclive-diffusivc transport phenomena as well as homogeneous reactions on the deposition profile of silicon films in the case of some characteristic topological effects. For that purpose, the Si-H chemical system including both homogeneous and heterogeneous reactions is used. The evolution of the deposition profile during vapor growth is simulated for various surface defects such as a step or a trench. The influence of basic processing parameters such as temperature or flowrate is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Schlote, J., Hinrich, S., Kuck, B. and Schroeder, K.W., Surf.Coat.Technol. 59, 316 (1993).Google Scholar
2 Hasper, A.,Holleman, J., Middelhoek, J., Kleijn, C.R. and Hoogendoorn, C.J., J.Electrochem.Soc. 138, 1728 (1991).Google Scholar
3 Hsieh, J.J., J.Vac.Sci.Technol. A, 11, 78 (1993).Google Scholar
4 Jain, M.K.A,Cale, T.S. and Gandv, T.H., J.Eleclrochem.Soc. 140, 242 (1993).Google Scholar
5 Tsai, C.Y. and Desu, S.B., J.Electrochem.Soc. 140, 2128 (1993).Google Scholar
6 Ikegawa, M. and Kobayashi, J., J.Electrochem.Soc. 136, 2982 (1989).Google Scholar
7 Rey, J.C., Cheng, L.Y.,Mcvittie, J.P. and Saraswat, K.C., J.Vac.Sci.Technol. A, 9, 1083 (1991).Google Scholar
8 Chang, J.C., Thin Solid Films 208, 177 (1992).Google Scholar
9 Van den brekel, C.H.J., Acta Electronica 21, 209 (1978).Google Scholar
10 Wang, Y.B., Chaussavoine, C. and Teyssandier, F., J.Cryst.Growth 126, 373 (1993).Google Scholar
11 Coltrin, M.E., Kee, R.J. and Evans, G.H., J.Electrochem.Soc. 136, 819 (1989).Google Scholar
12 Wang, Y.B., Teyssandier, F., Simon, J. and Feurer, R., J.Electrochem.Soc. 141, 824 (1994).Google Scholar
13 Moffat, H.K. and Jensen, K.F., J.Electrochem.Soc. 135, 459 (1988).Google Scholar
14 Kleijn, C.R., J.Electrochem.Soc. 138, 2190 (1991).Google Scholar