Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T07:51:46.937Z Has data issue: false hasContentIssue false

Deposition of Photoluminescent Nanocrystalline Silicon Films by SiF4-SiH4-H2 Plasmas

Published online by Cambridge University Press:  15 February 2011

G. Cicala
Affiliation:
Centro di Studio per la Chimica dei Plasmi C.N.R, c/o Dipartimento di Chimica, Università di Bari, Via Orabona, 4 – 70126 Bari, Italy, [email protected]
G. Bruno
Affiliation:
Centro di Studio per la Chimica dei Plasmi C.N.R, c/o Dipartimento di Chimica, Università di Bari, Via Orabona, 4 – 70126 Bari, Italy, [email protected]
P. Capezzuto
Affiliation:
Centro di Studio per la Chimica dei Plasmi C.N.R, c/o Dipartimento di Chimica, Università di Bari, Via Orabona, 4 – 70126 Bari, Italy, [email protected]
L. Schiavulli
Affiliation:
Dipartimento di Fisica, Università di Bari, and Istituto Nazionale di Fisica della Materia, Via Orabona, 4 – 70126 Bari, Italy.
V. Capozzi
Affiliation:
Dipartimento di Fisica, Università di Bari, and Istituto Nazionale di Fisica della Materia, Via Orabona, 4 – 70126 Bari, Italy.
G. Perna
Affiliation:
Dipartimento di Fisica, Università di Bari, and Istituto Nazionale di Fisica della Materia, Via Orabona, 4 – 70126 Bari, Italy.
Get access

Abstract

Visible photoluminescence at 1.62 eV has been observed at room temperature from fluorinated and hydrogenated nanocrystalline silicon (nc-Si:H,F) produced in a typical plasma enhanced chemical vapor deposition system. The use of SiF4-SiH4-H2 mixture, because of the H2 dilution and the presence of SiF4, favours the amorphous - crystalline transition through the etching process of the amorphous phase. The x - ray diffraction measurements give an average grain size of about 100 Å. The presence of these nanocrystals shifts the absorption edge of the films towards higher energy. An energy gap of 2.12 eV is estimated, although the hydrogen content in the material is only 4.5 at. %. The temperature dependence of the photoluminescence behaves similarly to that of porous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Veprek, S., Wirschem, T., Ruckschloβ, M., Tamura, H. and Oswald, J., in Microcrystallinc and Nanocrvstalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Kock, F. and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA 1995), pp. 99 - 110.Google Scholar
2.Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
3.Lehmann, V. and Foil, H., J. Electrochem. Soc. 37, 653 (1990).Google Scholar
4.Toyama, T., Matsui, T., Kurokawa, Y., Okamoto, H. and Hamakawa, Y., Appl. Phys. Lett. 69, 1261 (1996).Google Scholar
5.Solomon, I., Drévillon, B., Shirai, H. and Layadi, N., J. Non-Cryst. Solids 164–166, 989 (1993).Google Scholar
6.Oda, S. and Otobe, M., in Macrocrystalline and Nanocrvstalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Kock, F. and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA 1995), pp. 721731.Google Scholar
7.Liu, X., Wu, X., Bao, X. and He, Y., Appl. Phys. Lett. 64, 220 (1994).Google Scholar
8.Courteille, C., Dotier, J.-L., Dutta, J., Hollenstein, Ch., Howling, A. A. and Stoto, T., J. Appl. Phys. 78, 61 (1995).Google Scholar
9.Tachibana, K., Shirafuji, T., Hayashi, Y., Maekawa, S. and Morita, T., Jpn. J. Appl. Phys. 33, 4191 (1994).Google Scholar
10.Cicala, G., Capezzuto, P., Bruno, G., Schiavulli, L., Perna, G. and Capozzi, V., J. Appl. Phys. 80, (11) xx (1996).Google Scholar
11.Zheng, X. L., Wang, W. and Chen, H. C., Appl. Phys. Lett. 60, 986 (1992).Google Scholar