Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T00:21:55.205Z Has data issue: false hasContentIssue false

Deposition Kinetics and Microstructural Evolution in Sputtered TA Films: a Real-Time/In-Situ Study

Published online by Cambridge University Press:  10 February 2011

J. F. Whitacre
Affiliation:
Center for Nanomaterials Science, Department of Materials Science and Engineering, University of Michigan, Ann Arbor MI 48109
S. M. Yalisove
Affiliation:
Center for Nanomaterials Science, Department of Materials Science and Engineering, University of Michigan, Ann Arbor MI 48109
J. C. Bilello
Affiliation:
Center for Nanomaterials Science, Department of Materials Science and Engineering, University of Michigan, Ann Arbor MI 48109
Get access

Abstract

Ta films were grown using sputter gas (Ar) pressures ranging from 1.7 to 20 mTorr. This produced growth environments where incoming adatom kinetic energies ranged from over 100 eV to less than 1 eV. Film development was monitored in-situ using a x-ray diffraction set-up that allowed complete diffraction patterns to be rapidly collected without interrupting the growth process. Traditional x-ray diffraction methods, transmission electron microscopy (TEM), and transmission electron diffraction (TED) were used to examine film microstructure after growth. It was found that lower Ar pressures, which allow higher adatom kinetic energies, produced films that displayed significant grain growth, texturing, and a smooth surface morphology. Those films grown at increasingly higher Ar pressures displayed smaller grain sizes, less texturing, and increasingly porous microstructures. To further explore this effect, the Ar pressure was varied during deposition for several films. The in-situ probe allowed the effects of each pressure increment to be analyzed and compared with previous x-ray and microscopy results. It was found that the microstructure of any particular film layer depended more on the deposition conditions during its formation rather than the structure or crystallography of previous layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murarka, S. P., Metallization: Theory and Practicef or VLSI and ULSI, Butterworth-Heinemann, Boston, 1993.Google Scholar
2. Holloway, K. and Fryer, P., Appl. Phys. Lett. 57 (17) p. 1736 (1990).Google Scholar
3. Keif, M. T. and Egelhoff, W. F. Jr., J. Appl. Phys. 73 p. 6195 (1993)Google Scholar
4. Adams, D. P., Vill, M., Tao, J., Bilello, J. C., and Yalisove, S. M., J. Appl. Phys. 74, p. 1015(1993).Google Scholar
5. Windischmann, H., Crit. Rev. in Solid State and Mat. Sci. 17(6), p. 547596 (1992)Google Scholar
6. Vill, M. A., Adams, D. P., Yalisove, S. M., Bilello, J. C.. Acta Met. vol.43, no.2 p. 427–37 (1995).Google Scholar
7. Thorton, J. A., J. Vac. Sci. A. 4(6) p. 3059 (1986).Google Scholar
8. Movchan, B. A., Demchishin, A. V., Phys. Met. Metallogr. 28, p. 83 (1969).Google Scholar
9. Bunshah, R. F., J. Vac. Sci. Techol., 11(4) July/Aug p. 633 (1974).Google Scholar
10. Grovenor, C.R. M., Hentzell, H. T. G.,and Smith, D. A., Acta Met. 32(5) p. 773 (1984).Google Scholar
11. Kay, E., Parmigiani, F., and Parrish, W., J. Vac Sci. Technol. A 6 (6) p. 3074 (1988).Google Scholar
12. Craig, S., Harding, G. L., J. Vac Sci. Technol., 21(3), p. 833 (1982).Google Scholar
13. Ino, K., Shinohara, T., Ushiki, T., and Ohmi, T., J. Vac. Sci. Technol. A 15(5) p. 2627 (1997).Google Scholar
14. Messier, R., Giri, A.P.. and Roy, R.A., J. Vac. Sci. Tech. A. 2(2) p. 500 (1984).Google Scholar
15. Whitacre, J. F., Yalisove, S. M. & Bilello, J. C., Applied Physics Letters, submitted March 1999 Google Scholar
16. Malhotra, A. K., Whitacre, J. F., Zhao, Z. B., Hershberger, J., Yalisove, S. M., Bilello, J. C.. Surf. and Coatings Technol. 110 p. 105110 (1998).Google Scholar
17. Intel Inc., software analysis package handbook for the Wingo and Goman analysis programs, (1997).Google Scholar
18. Whitacre, J. F., Yalisove, S. M. & Bilello, J. C., Journal of Applied Physics, Document in Preperation.Google Scholar
19. Whitacre, J. F., Rek, Z. U., Yalisove, S. M. and Bilello, J. C., Spring 1998 MRS Meeting Proceedings (Applications of Synchrotron Radiation to Materials Science), Vol 524, 115.Google Scholar
20. Whitacre, J. F., Rek, Z. U., Yalisove, S. M. & Bilello, J. C., Journal of Applied Physics Letters, Document in Preparation.Google Scholar
21. Parfitt, L., Ph.D. Dissertation, 1996.Google Scholar