Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T05:57:21.705Z Has data issue: false hasContentIssue false

Deposition and Characterization of Polycrystalline Silicon Films on Glass for thin Film Solar Cells

Published online by Cambridge University Press:  15 February 2011

R. B. Bergmann
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, D-70569 Stuttgart, Germany
J. Krinke
Affiliation:
Universität Erlangen, Institut für Werkstoffwissenschaften VII, Cauerstr. 6, D-91058, Erlangen
H. P. Strunk
Affiliation:
Universität Erlangen, Institut für Werkstoffwissenschaften VII, Cauerstr. 6, D-91058, Erlangen
J. H. Werner
Affiliation:
Universität Stuttgart, Institut für Physikalische Elektronik, PfafFenwaldring 47, D-70569, Stuttgart
Get access

Abstract

We deposit phosphorus-doped, amorphous Si by low pressure chemical vapor deposition and subsequently crystallize the films by furnace annealing at a temperature of 600°C. Optical in-situ monitoring allows one to control the crystallization process. Phosphorus doping leads to faster crystallization and a grain size enhancement with a maximum grain size of 15 μm. Using transmission electron microscopy we find a log-normal grain size distribution in our films. We demonstrate that this distribution not only arises from solid phase crystallization of amorphous Si but also from other crystallization processes based on random nucleation and growth. The log-normal grain size distribution seems to be a general feature of polycrystalline semiconductors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Werner, J. H., Bergmann, R., and Brendel, R., in Festkörperprobleme /Advances in Solid State Physics, Vol. 34, edited by Heibig, R. (Vieweg, Braunschweig, 1994), p. 115.Google Scholar
2. Wu, I.-W., Solid State Phenomena 37–38, 533 (1994).Google Scholar
3. Shah, A. V., Platz, R., and Keppner, H., Sol. Energy Mater. Solar Cells 38, 501 (1995)Google Scholar
4. Brendel, R., Bergmann, R. B., Lölgen, P., Wolf, M., and Werner, J. H., Appl. Phys. Lett. 70, 390 (1997).Google Scholar
5. Bergmann, R. B., Brendel, R., Lölgen, P., Krinke, J., Strunk, H. P., and Werner, J. H., Semicond. Sci. Techn. 12, 224 (1997).Google Scholar
6. Matsuyama, T., Terada, N., Baba, T., Sawada, T., Tsuge, S., Wakisaka, K., and Tsuda, S., J. Non-Cryst. Solids 198–200, 940 (1996).Google Scholar
7. Bergmann, R., Oswald, G., Albrecht, M., and Werner, J. H., Solid State Phenomena 51–52, 515 (1995).Google Scholar
8. Bergmann, R. B. and Krinke, J., J. Cryst. Growth, xxx (1997), in press.Google Scholar
9. Bergmann, R. B., J. Cryst. Growth 165, 341 (1996).Google Scholar
10. Secco d'Aragona, F., J. Electrochem. Soc. 119, 948 (1972).Google Scholar
11. Shi, F. G., J. Appl. Phys. 76, 5149 (1994).Google Scholar
12. Bergmann, R. B., Oswald, G., Albrecht, M. and Gross, V., Sol. Energy Mat. Sol. Cells, xxx (1997), in press.Google Scholar
13. Public domain NIH (U.S. National Institutes of Health) image program, available from the National Technical Information Service, Springfield, Virginia, Part No. PB95–500195GEI.Google Scholar
14. Kurtz, S. K. and Carpay, F. M. A., J. Appl. Phys. 51, 5725 (1980).Google Scholar
15. Aitchison, J., Brown, J. A. C, The Lognormal Distribution, (Cambridge University Press, London, 1969), p. 8.Google Scholar
16. Bergmann, R. B., Shi, F. G. and Krinke, J., unpublished.Google Scholar
17. Kumomi, H., Shi, F. G., Phys. Rev. B52, 16753 (1995).Google Scholar
18. Oelting, S., Martini, D., Köppen, H., and Bonnet, D., in Proc. 13th Europ. Photvoltaic Solar Energy Conf. edited by Freisesleben, W., Palz, W., Ossenbrink, H. A., and Helm, P. (H.S. Stephens & Assoc, Bedford, 1995), p. 1681.Google Scholar
19. measured on SILSO wafer obtained in 1994 from Bayer Solar GmbH. For an overview on the fabrication technique see e.g. Watanabe, H., MRS Bulletin 18, 29 (1993).Google Scholar
20. Kamins, T., Polycrystalline Silicon for Integrated Circuit Applications, (Kluwer, Boston, 1988), p. 181 Google Scholar
21. Werner, J. H. and Strunk, H. P., J. Phys. (Paris), Colloque C1, C189 (1982).Google Scholar
22. Werner, J. H., Solid State Phenomena 37–38, 213 (1994).Google Scholar