Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T17:34:45.514Z Has data issue: false hasContentIssue false

Deposition and Characterization of Carbon Nitride Films by Laser Processed Methods

Published online by Cambridge University Press:  15 February 2011

Ashok Kumar
Affiliation:
Advanced Thin Film Laboratory, Department of Electrical Engineering, EEB 60, University of South Alabama, Mobile, AL 36688
R. Alexandrescu
Affiliation:
National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG-36, R-76900, Bucharest, Romania
Michael A. George
Affiliation:
Laboratory for Materials and Surface Science, University of Alabama in Huntsville, Huntsville, AL 35899
Get access

Abstract

Laser assisted methods such as laser physical vapor deposition (LPVD) and laser induced chemical vapor deposition (LCVD) have been utilized to grow carbon nitride (CNx) films on various substrates. It has been shown that the both techniques produce good quality thin films of CNx. In LPVD, a laser beam (λ= 248 nm) has been used to ablate the pyrolytic graphite target in nitrogen atmosphere, where as CO2 laser was to irradiate carbon-nitrogen containing mixtures such as C2H2/N2O/NH3 in LCVD method. A comparative analysis will be presented in terms of structural properties of CNx films prepared by both techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A. Y. and Cohen, M. L., Science 245, 841 (1989)Google Scholar
2. Liu, A. Y. and Cohen, M. L., Phys. Rev. B 41, 10727 (1990)Google Scholar
3. Marton, D., Boyd, K. J., Al-Bayati, A. H., Todorov, S. S., and Rabalais, J. W., Phys. Rev. Lett. 73, 118 (1994)Google Scholar
4. Zhang, Y. F., Zhou, Z. H. and Li, H. L., Appl. Phys. Lett. 68, 634 (1996)Google Scholar
5. He, Xiao-Ming, Shu, Li, Li, Wen-Zhi, and Li, Heng-De, J. Mater. Res., 12 (6), 1595 (1997)Google Scholar
6. Bhusari, D. M., Chen, C. K., Chen, K. H., Chen, L. C., and Chuang, T. J., MRS Symp. Proc., 441, 693 (1997)Google Scholar
7. Maya, L., Cole, D. R., and Hagaman, E. W., J. Am. Ceram. Soc. 74, 1686 (1991)Google Scholar
8. Wixom, M. R., J. Am. Ceram. Soc. 73, 1973 (1990)Google Scholar
9. Yu, K. M., Cohen, M. L., Haller, E. E., Hansen, W. L., Liu, A. Y. and Wu, I. C., Phys. Rev. B 49, 5043 (1994)Google Scholar
10. Niu, C., Lu, Y. Z. and Liber, C. M., Science 261, 334 (1993)Google Scholar
11. Kumar, Ashok, Ekanayake, U., Inturi, R. B. and Barnard, J. A.MRS symposium Proceeding, Vol. 434, 189194 (1996)Google Scholar
12. Kumar, A. et al. , J of Materials Engineering and Performance, Vol. 6 (5), 583 (1997)Google Scholar
13. Li, D., Wong, M. S., Chung, Y. W., Cheng, S. C., Chu, X., Lin, X. W., David, V., and Sproul, W. D., Appl. Phys. Lett. 67, 203 (1995)Google Scholar
14. Narayan, J., Tiwari, P., Xhen, X., et.al. Appl. Phys. Lett. 61, 1290 (1992)Google Scholar
15. Kumar, Ashok, Narayan, J., and Chen, X., Appl. Phys. Lett. 6, 976 (1992)Google Scholar
16. Alexandrescu, R., Cireasa, R., Punga, G., Crunteanu, A., Petcu, S., Morjan, I., Mihailescu, I. N., Andrie, A., Appl. Surf. Sci. 109/110, 544 (1997)Google Scholar
17. Kjendal, D., Thesis, M. S., University of South Alabama (1995)Google Scholar
18. Mizokawa, Y., Miyasoto, T., Nakamura, S., Geib, K.M. and Wilmsen, C.W., J. Vac. Sci. Technolo. A 5, 2809 (1988)Google Scholar
19. Rossi, F., et al. , J. Mater. Res., 9(9), 2440 (1994)Google Scholar
20. Hoffman, A., Gousman, I. and Brener, R., Appl. Phys. Lett. 64, 845 (1994)Google Scholar
21. Diani, M., et al. , Dia. and Rel. Mat., 3, 264 (1994)Google Scholar
22. Liber, C. M., Zhang, Z. J., Adv. Mater. 6, 497 (1994)Google Scholar
23. Wu, Z., Yu, Y., Liu, X., Appl. Phys. Lett. 68, 1291 (1996)Google Scholar
24. Kumar, S., Butcher, K.S.A, Tansley, T. L., J. Vac. Sci. Technol A 14, 2687 (1996)Google Scholar