Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T10:43:41.703Z Has data issue: false hasContentIssue false

Density-Functional Theoretical Study on the Intercalation Properties of Layered LiMO2 (M = Zr, Nb, Rh, Mo, and Ru)

Published online by Cambridge University Press:  01 February 2011

S. P. Singh
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR - 00681–9016.
M. Tomar
Affiliation:
Department of Physics, University of Puerto Rico, Mayagüez, PR - 00681–9016.
Yasuyuki Ishikawa
Affiliation:
Department of Chemistry, University of Puerto Rico, San Juan, PR – 00931–3346
S. B. Majumder
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR - PR – 00931–3343
R. S. Katiyar
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR - PR – 00931–3343
Get access

Abstract

Average Li intercalation potentials were calculated for lithium-4d-transition-metal-oxides. The effect on the intercalation voltage of metal substitution was systematically studied by altering the 4d transitional metals M (M= Mo, Nb, Rh, Zr, Ru) in LiMO2 in the α-NaFeO2 structure. Lattice parameters in the layered α-NaFeO2 structure computed in the GGA approximation are in reasonable agreement with experiment. The intercalation potentials and relative formation energies of the fully lithiated LiNi1/3Mn1/3Mo1/3O2, fully delithiated Ni1/3Mn1/3Mo1/3O2 and the intermediate phases, Li1/3Ni1/3Mn1/3Mo1/3O2 and Li2/3Ni1/3Mn1/3Mo1/3O2, were computed by employing a generalized alloy theory. A minute substitution of cationic Mo in LiNiMnO2 was experimentally investigated to examine the effect of the Mo substitution on the electrochemical properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reference:

1. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J. B., Mater. Res. Bull. 15, 783 (1980)Google Scholar
2. Aydinol, M. K., Kohan, A. F., Ceder, G., Cho, K. and Joannopoulos, J., Phys. Rev. B, 56, 3, 1354 (1997).Google Scholar
3. Ceder, G., Chiang, Y.-M., Sadoway, D.R., Aydinol, M. K., Jang, Y.-I. and Huang, B., Nature, 392, 694 (1998).Google Scholar
4. Aydinol, M. K., Kohan, A. F., Ceder, G., Journal of power sources, 68, 664 (1997).Google Scholar
5. Van der Ven, A., Aydinol, M. K., Ceder, G., kress, G. and Hafner, J., Phys. Rev. B, 58, 6, 2975 (1998).Google Scholar
6. Barker, J., Saidi, M. Y. and Swoyer, J. L., Solid state ionics 158, 3–4, 261 (2003).Google Scholar
7. Madhavi, S., Subba Rao, G. V., Chaowdari, B.V.R., and Li, S.F.Y., J. Electrochemical Soc., 148, 11, A1279 (2001).Google Scholar
8. Reed, J., Ceder, G., Van der Ven, A., Electrochem. Solid State Lett., 4, 6 A78 (2001).Google Scholar
9. de Fontaine, D. In Solid State Physics; Ehrenreich, H., Turnbull, D., Eds.; Academic press: New York, Vol.47, 33 (1994).Google Scholar
10. Hung, C. K., Baker, S.C., and Huginins, R. A., J. Electrochem. Soc., 135, 408 (1988)Google Scholar
11. James, A. C. W. P. and Goodenough, J. B., J. Solid Stat. Chem., 76, 87 (1988)Google Scholar
12. Hwang, B. J., Tsai, Y. W., Carlier, D., Ceder, G., Chem. Mater, 15, 3676 (2003).Google Scholar
13. Kim, J. H., Yoon, C.S. and Sun, Y.-K., J. Electrochemical Soc., 150, 4, A538 (2003).Google Scholar
14. Koyama, Y., Makimura, Y., Tanaka, I., Adachi, H., and Ohzuku, T., J. Electrochemical Soc., 151, 9, A1499 (2004).Google Scholar
15. Kang, K., Carlier, D., Reed, J., Arroyo, E. M., Ceder, G., Croguennec, L. and Delmas, C., Chem. Mater, 15, 4503 (2003).Google Scholar
16. Park, S. H., Oh, S.W., Kang, S.G., Myng, S.T. and Sun, Y.K., Chem. Lett. 33, 1, 2 (2004).Google Scholar