Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:39:54.150Z Has data issue: false hasContentIssue false

Delta Doping for Deep Level Analysis in Semiconductors

Published online by Cambridge University Press:  25 February 2011

J. Piprek
Affiliation:
Humboldt Universität, Fachbereich Physik, Invalidenstr. 110, 0–1040 Berlin, Germany
P. Krispin
Affiliation:
Paul-Drude-Institut, Hausvogteiplatz 5–7, 0–1086 Berlin, Germany
H. Kostial
Affiliation:
Paul-Drude-Institut, Hausvogteiplatz 5–7, 0–1086 Berlin, Germany
K. W. BÖer
Affiliation:
University of Delaware, Material Science Program, Newark, DE 19716
Get access

Abstract

The occupation of deep-level defects in semiconductors is investigated by delta-doping such impurities at a specified distance from the metallurgical boundary within Schottky diodes. Capacitance-voltage characteristics are analyzed using ID device simulation software. These characteristics change significantly depending on the deep-level energy and the sheet position. This new approach to deep-level analysis is applied to Schottky diodes on MBE-grown n-GaAs with a planar titanium doped sheet. At moderate Ti concentrations the well-known Ti acceptor level near Ec-0.2 eV governs the electrical properties. In addition, two other types of Ti defects are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Piprek, J., Krispin, P., Kostial, H., Lange, C. H. and Böer, K. W., phys. stat. sol. (b) 173, 661 (1992).Google Scholar
[2] Sze, S.M., Physics of Semiconductor Devices, (John Wiley & Sons, New York, 1982), Ch. 5.2.Google Scholar
[3] Basore, P. A., IEEE Trans. El. Dev. 37, 337 (1990).Google Scholar
[4] Shockley, W. and Read, W. T., Jr., Phys. Rev. 87, 835 (1952) andGoogle Scholar
Hall, R. N., Phys. Rev. 87, 387 (1952).Google Scholar
[5] Ullrich, H., Knecht, A., Bimberg, D., Kräutle, H., and Schlaak, W., to be published in J. Appl. Phys. (1992).Google Scholar
[6] Scheffler, H., Korb, W., Bimberg, D. and Ulrici, W., Appl. Phys. Lett. 57, 1318 (1990).Google Scholar
[7] Brandt, C. D., Hennel, A. M., Bryskiewicz, T., Ko, K. Y., Pawlosicz, L. M., and Gatos, H. C., J. Appl. Phys. 65, 3459 (1989).Google Scholar
[8] Fronius, H., Fischer, A., and Ploog, K., J. Crystal Growth 81, 169 (1987).Google Scholar
[9] Däweritz, L. and Hey, R., Surf. Sci. 236, 15 (1990).Google Scholar
[10] Kim, K. B., Kniffin, M., Sinclair, R., and Helms, C. R., J. Vac. Sci. Technol. A, 6, 1473 (1988).Google Scholar