Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:30:06.922Z Has data issue: false hasContentIssue false

Deformed Helix Ferroelectric Liquid Crystals with Large Tilt Angles in Optically Addressed Spatial Light Modulators for Dynamical Holography Applications

Published online by Cambridge University Press:  10 February 2011

L. A. Beresnev
Affiliation:
Institute of Physical Chemistry, Darmstadt University of Technology, Petersenstr. 20, 64287 Darmstadt, Germany
W. Haase
Affiliation:
Institute of Physical Chemistry, Darmstadt University of Technology, Petersenstr. 20, 64287 Darmstadt, Germany
A. P. Onokhov
Affiliation:
All-Russian S.I.Vavilov Research Center “GOI”, Birgevaya Liniya 12, St. Petersburg, Russia
W. Dultz
Affiliation:
Deutsche Telekom AG, Am Kavalleriesand 3, 64276 Darmstadt, Germany
M. V. Isaev
Affiliation:
All-Russian S.I.Vavilov Research Center “GOI”, Birgevaya Liniya 12, St. Petersburg, Russia
N. A. Feoktistov
Affiliation:
A.F.Ioffe Physical Technical Institute, St. Petersburg, Russia
N. L. Ivanova
Affiliation:
All-Russian S.I.Vavilov Research Center “GOI”, Birgevaya Liniya 12, St. Petersburg, Russia
E. A. Konshina
Affiliation:
All-Russian S.I.Vavilov Research Center “GOI”, Birgevaya Liniya 12, St. Petersburg, Russia
A. N. Chaika
Affiliation:
Institute of Laser Physics “GOI”, Birgevaya Liniya 12, St.Petersburg, Russia.
V. A. Berenberg
Affiliation:
Institute of Laser Physics “GOI”, Birgevaya Liniya 12, St.Petersburg, Russia.
T. Weyrauch
Affiliation:
Institute of Physical Chemistry, Darmstadt University of Technology, Petersenstr. 20, 64287 Darmstadt, Germany
Get access

Abstract

Optically addressed spatial light modulators (OASLMs) based on deformed helix ferroelectric liquid crystals (DHFLC) with high tilt angles on order of 40° and helical pitches less than 0.2μm were developed. The diffraction efficiency reached the order of 20%. The light induced deviation of the optical axis of the DHFLC layer was measured in sandwich structures consisting of photoconductors and liquid crystals. The photoelectric parameters of photoconductive amorphous silicon carbide a-SiC:H and a photoconductive polymeric films were measured with and without light blocking and reflecting layers. The application of the developed OASLMs in a holographic image corrector was demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grinberg, J., Jacobson, A., Bleha, W., Miller, L., Fraas, L., Boswell, D., and Myer, G., Opt. Eng. 14, 217 (1975)Google Scholar
2. Meyer, R.B., Liebert, L., Strzelecki, L. and Keller, P., J. de Phys.-Lett. 36, L69–L71 (1975).Google Scholar
3. Moddel, G., in Spatial Light Modulator Technology, edited by Efron, U. (Dekker, New York, 1994) p. 287.Google Scholar
4. Johnson, K.M., Mao, C.C., Moddel, G., Handschy, M.A., and Arnett, K., Opt. Lett., 15, 1114 (1990).Google Scholar
5 Fukushima, S., Kurokawa, T., and Ohno, M., Appl. Phys. Lett. 58, 787 (1991).Google Scholar
6. Grüneisen, M.T., and Wilkes, J.M., “Compensated Imaging by Real-Time Holography with Optically Addressed Spatial Light Modulators”, OSA Trends in Optics and Photonics Series (1997), presented at the Spring Topical Meeting on Spatial Light Modulators, Lake Tahoe, NV, March 17–19, 1997, Paper STuB5.Google Scholar
7. O'Callagan, M.J., Handschy, M.A., Optics Letters, 16 (10), 770 (1991); U.S. Patent No. 5 181 665 (26 January 1993).Google Scholar
8. Beresnev, L.A., Hossfeld, J., Dultz, W., Onokhov, A.P., and Haase, W. in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials Ill, edited by Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R., Rubner, M.F., Wnek, G.E., and Chiang, L.Y. (Mat. Res. Soc. Proc. 413, Boston, MA, 1996) pp. 363370.Google Scholar
9. Beresnev, L.A., Chigrinov, V.G., Dergachev, D.I., Pozhidayev, E.P., Fünfschilling, J., and Schadt, M., Liquid Crystals 5, 1171 (1989).Google Scholar
10. Zherzdev, A.V., Karpov, V.G., Pevtsov, A.B., Pilatov, A.G., and Feoktistov, N.A., Soy. Phys. Semicond., 26 (4), 421 (1992); Fiz. Tekh. Poluprovdn. 26, 747 (1992).Google Scholar
11. Ivanova, N.L., Morozova, L.E., Onokhov, A.P., Pevtsov, A.B., Feoktistov, N.A., Pis'ma Zh. Tekhn. Fiz. (Russ. J. Tech. Phys.) 22 (4), 7 (1996).Google Scholar
12. Mylnikov, V.S., Grosnov, M.A., Vasilenko, N.A., Kotov, B.V., and Soms, L.N., Sov. J. of Techn. Phys.-Lett. (Pis'ma Zh. Tekhn. Fiz.) 11 (1), 38 (1985).Google Scholar
13. Akiyama, K., Takimoto, A., and Ogawa, H., Applied Optics 32, 6493 (1993).Google Scholar
14. Mylnikov, V., Mol. Cryst. Liq. Cryst. 152, 597 (1987).Google Scholar
15. Konshina, E.A., Onokhov, A.P., Feoktistov, N.A., Beresnev, L.A., and Haase, W., to be published.Google Scholar
16. Baikalov, V.A., Beresnev, L.A., and Blinov, L.M., Mol. Cryst. Liq. Cryst. 127, 397 (1985).Google Scholar
17. Berenberg, V.A. et al, to be published.Google Scholar
18. Beresnev, L., Onokhov, A., Dultz, W., and Haase, W., Mol. Cryst. Liq. Cryst. 304, 285 (1997).Google Scholar