Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:19:33.817Z Has data issue: false hasContentIssue false

Deformation Mechanisms in Refractory Rare-Earth Phosphates

Published online by Cambridge University Press:  26 February 2011

Randall Hay
Affiliation:
[email protected], Air Force Research Laboratory, AFRL/MLLN, Bldg. 655 Area B, WPAFB, OH, 45433, United States
Pavel Mogilevsky
Affiliation:
UES Inc. Beavercreek, OHU.S.A.
Get access

Abstract

A method for prediction of deformation twin modes from analysis of the necessary atomic shuffles was developed for monazite (monoclinic LaPO4). This method is applied to scheelite (tetragonal CaWO4), xenotime (tetragonal YPO4), and zircon (tetragonal ZrSiO4). The predictions are compared to observations in these materials. Merit of the predictive method is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kelly, A., Groves, G. W., Crystallography and Crystal Defects (Addison Wesley, Reading, MA, 1970), pp. 428.Google Scholar
2 Nicolas, A., Poirier, J. P., Crystalline Plasticity and Solid-State Flow in Metamorphic Rock (John WIley & Sons, 1976), pp. 444.Google Scholar
3 Christian, J. W., Mahajan, S., Prog. Mater. Sci. 39, 1 (1995).Google Scholar
4 Hay, R. S., Ceram. Eng. Sci. Proc. 21, 203 (2000).Google Scholar
5 Hay, R. S., Acta mater. 51, 5255 (2003).Google Scholar
6 Hay, R. S., Marshall, D. B., Acta mater. 51, 5235 (2003).Google Scholar
7 Hay, R. S., J. Am. Ceram. Soc. 87, 1149 (2004).Google Scholar
8 Hay, R. S., Philos. Mag. 85, 373 (2005).Google Scholar
9 Davis, J. B., Hay, R. S., Marshall, D. B., P. Morgan, E. D., Sayir, A., J. Am. Ceram. Soc. 86, 305 (2003).Google Scholar
10 Crocker, A. G., in Twinning in Advanced Materials Yoo, M. H., Wuttig, M., Eds. (TMS, Pittsburgh, PA, 1993) pp. 317.Google Scholar
11 Starkey, J., in Deformation Twinning Reed-Hill, R. E., Hirth, J. P., Rogers, H. C., Eds. (American Institute of Mining, Metallurgical, and Petroleum Engineers, New York, NY, 1964) pp. 177191.Google Scholar
12 Marshall, D. B., McLaren, A. C., Phys. Chem Minerals 1, 351 (1977).Google Scholar
13 Wooster, W. A., Mineral. Mag. 46, 265 (1982).Google Scholar
14 Morgan, P. E. D., Marshall, D. B., J. Am. Ceram. Soc. 78, 1553 (1995).Google Scholar
15 Muller, O., Roy, R., The Major Ternary Structural Families, Crystal Chemistry of Non-Metallic Materials (Springer-Verlag, New York, ed. 1st, 1974), pp. 486.Google Scholar
16 Mullica, D. F., Milligan, W. O., Grossie, D. A., Beall, G. W., Boatner, L. A., Inorg. Chim. Acta 95, 231 (1984).Google Scholar
17 Goettler, R. W., Sambasivan, S., Dravid, V., Kim, S., in Computer Aided Design of High Temperature Materials Pechenik, A., Kalia, R., Vashishta, P., Eds. (Oxford University Press, 1999) pp. 333349.Google Scholar
18 Hurlbut, C. S., Klein, C., Manual of Mineralogy (after Dana, James D.) (John Wiley & Sons, ed. 19th, 1977), pp. 532.Google Scholar
19 Hikichi, Y., Ota, T., Daimon, K., Hattori, T., Mizuno, M., J. Am. Ceram. Soc. 81, 2216 (1998).Google Scholar
20 Hikichi, Y., Nomura, T., J. Am. Ceram. Soc. 70, C252 (1987).Google Scholar
21 Leroux, H., Reimold, W. U., Koeberl, C., Hornemann, U., Doukhan, J.C., Earth Plan. Sci. Lett. 169, 291 (1999).Google Scholar
22 Mogilevsky, P., Philos. Mag. 85, 3511 (2005).Google Scholar
23 Goretta, K. C. et al. , J. Eur. Ceram. Soc. 21, 1055 (2001).Google Scholar