Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T01:04:45.283Z Has data issue: false hasContentIssue false

Defects, Tunneling, and EPR Spectra of Single-Molecule Magnets

Published online by Cambridge University Press:  10 February 2011

Kyungwha Park
Affiliation:
School of Computational Science and Information Technology, Florida State University, Tallahassee, Florida 32306 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306 Center for Computational Materials Science, Code 6390, Naval Research Laboratory, Washington DC 20375
M. A. Novotny
Affiliation:
Department of Physics and Astronomy and the Engineering Research Center, Mississippi State University, Mississippi State, Mississippi 39762
N. S. Dalal
Affiliation:
Center for Computational Materials Science, Code 6390, Naval Research Laboratory, Washington DC 20375
S. Hill
Affiliation:
Department of Physics, University of Florida, Gainesville, Florida 32611
P. A. Rikvold
Affiliation:
School of Computational Science and Information Technology, Florida State University, Tallahassee, Florida 32306 Center for Materials Research and Technology and Department of Physics, Florida State University, Tallahassee, Florida 32306
S. Bhaduri
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611
G. Christou
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611
D. N. Hendrickson
Affiliation:
Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093
Get access

Abstract

We examine theoretically electron paramagnetic resonance (EPR) lineshapes as functions of resonance frequency, energy level, and temperature for single crystals of three different kinds of single-molecule nanomagnets (SMMs): Mn12 acetate, Fe8Br, and the S = 9/2 Mn4 compound. We use a density-matrix equation and consider distributions in the uniaxial (second-order) anisotropy parameter D and the g factor, caused by possible defects in the samples. Additionally, weak intermolecular exchange and electronic dipole interactions are included in a mean-field approximation. Our calculated linewidths are in good agreement with experiments. We find that the distribution in D is common to the three examined single-molecule magnets. This could provide a basis for a proposed tunneling mechanism due to lattice defects or imperfections. We also find that weak intermolecular exchange and dipolar interactions are mainly responsible for the temperature dependence of the lineshapes for all three SMMs, and that the intermolecular exchange interaction is more significant for Mn4 than for the other two SMMs. This finding is consistent with earlier experiments and suggests the role of spin-spin relaxation processes in the mechanism of magnetization tunneling.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Quantum Tunneling of Magnetization – QTM '94, Vol. 301 of NATO Advanced Study Institute, Series E: Applied Sciences , edited by Gunther, L. and Barbara, B. (Kluwer, Dordrecht, 1995).Google Scholar
2. Chudnovsky, E. M. and Tejada, J., Macroscopic Quantum Tunneling of the Magnetic Moment, Cambridge Studies in Magnetism, Vol. 4 (Cambridge University Press, Cambridge, 1998) and references therein.Google Scholar
3. Leuenberger, M. N. and Loss, D., Nature (London) 410, 789 (2001).Google Scholar
4. Villain, J., Hartman-Boutron, F., Sessoli, R., and Rettori, A., Europhys. Lett. 27, 159 (1994).Google Scholar
5. Barra, A. L., Gatteschi, D., and Sessoli, R., Phys. Rev. B 56, 8192 (1997).Google Scholar
6. Hill, S., Perenboom, J. A. A. J., Dalal, N. S., Hathaway, T., Stalcup, T., and Brooks, J. S., Phys. Rev. Lett. 80, 2453 (1998).Google Scholar
7. Perenboom, J. A. A. J., Brooks, J. S., Hill, S., Hathaway, T., and Dalal, N. S., Phys. Rev. B 58, 330 (1998).Google Scholar
8. Mirebeau, I., Hennion, M., Casalta, H., Andres, H., Gädel, H. U., Irodova, A. V., and Caneschi, A., Phys. Rev. Lett. 83, 628 (1999).Google Scholar
9. Lis, T., Acta Crystallogr. B 36, 2042 (1980).Google Scholar
10. Wieghart, K., Pohl, K., Jibril, I., and Huttner, G., Angew. Chem. Int. Ed. Engl. 23, 77 (1984).Google Scholar
11. del Barco, E., Hernandez, J. M., Tejada, J., Bisksup, N., Achey, R., Rutel, I., Dalal, N., and Brooks, J., Phys. Rev. B 62, 3018 (2000).Google Scholar
12. Maccagnano, S., Achey, R., Negusse, E., Lussier, A., Mola, M. M., Hill, S., and Dalal, N. S., Polyhedron 20, 1441 (2001).Google Scholar
13. Garg, A., Europhys. Lett. 22, 205 (1993).Google Scholar
14. Edwards, R. S., Hill, S., Bhaduri, S., Aliaga-Alcade, N., Bolin, E., Maccagnano, S., Christou, G., and Hendrickson, D. N. (unpublished).Google Scholar
15. Park, K., Novotny, M. A., Dalal, N. S., Hill, S., and Rikvold, P. A., Phys. Rev. B 65, 014426 (2002).Google Scholar
16. Hill, S., Maccagnano, S., Park, K., Achey, R. M., North, J. M., and Dalal, N. S., Phys. Rev. B 65, 224410 (2002).Google Scholar
17. Blum, K., Density Matrix Theory and Applications, 2nd edition (Plenum, New York, 1996).Google Scholar
18. Chudnovsky, E. M. and Garanin, D. A., Phys. Rev. Lett. 87, 187203 (2001); Phys. Rev. B 65, 094423 (2002).Google Scholar
19. Cornia, A., Sessoli, R., Sorace, L., Gatteschi, D., Barra, A. L., and Daiguebonne, C., Phys. Rev. Lett. 89, 257201 (2002).Google Scholar
20. Park, K., Novotny, M. A., Dalal, N. S., Hill, S., and Rikvold, P. A., Phys. Rev. B 66, 144409 (2002).Google Scholar
21. McMillan, M. and Opechowski, W., Can. J. Phys. 38, 1168 (1960);Google Scholar
Park, K., Novotny, M. A., Dalal, N. S., Hill, S., and Rikvold, P. A., Phys. Rev. B 39, 1369 (1961).Google Scholar
22. Van Vleck, J. H., Phys. Rev. 74, 1168 (1948).Google Scholar
23. Leuenberger, M. N. and Loss, D., Phys. Rev. B 61, 1286 (2000);Google Scholar
Van Vleck, J. H., Phys. Rev. 61, 12200 (2000).Google Scholar
24. Parks, B., Loomis, J., Rumberger, E., Hendrickson, D., and Christou, G., Phys. Rev. B 64, 184426 (2001).Google Scholar
25. Mukhin, A., Gorshunov, B., Dressel, M., Sangregorio, C., and Gatteschi, D., Phys. Rev. B 63, 214411 (2001).Google Scholar
26. Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. N., and Christou, G., Nature 416, 406 (2002).Google Scholar
27. Wernsdorfer, W., Bhaduri, S., Tiron, R., Hendrickson, D. N., and Christou, G., Phys. Rev. Lett. 89, 197201 (2002).Google Scholar
28. Wernsdorfer, W., Bhaduri, S., Boskovic, C., Christou, G., and Hendrickson, D. N., Phys. Rev. B 65, 180403(R) (2002).Google Scholar
29. Abragam, A. and Bleaney, B., Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).Google Scholar