Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T05:51:59.212Z Has data issue: false hasContentIssue false

Defects in HfO2 Based Dielectric Gate Stacks

Published online by Cambridge University Press:  31 January 2011

Patrick M. Lenahan
Affiliation:
[email protected], Penn State, University Park, Pennsylvania, United States
Jason T. Ryan
Affiliation:
[email protected], Penn State, University Park, Pennsylvania, United States
Corey J. Cochrane
Affiliation:
[email protected], Penn State, University Park, Pennsylvania, United States
John F. Conley
Affiliation:
[email protected], Oregon State University, Corvallis, Oregon, United States
Get access

Abstract

We report on both conventional electron paramagnetic resonance (EPR) measurements of fully processed HfO2 based dielectric films on silicon and on electrically detected magnetic resonance (EDMR) measurements of fully processed HfO2 based MOSFETs. The magnetic resonance measurements indicate the presence of oxygen vacancy and oxygen interstitial defects within the HfO2 and oxygen deficient silicons in the interfacial layer. The EDMR results also indicate the generation of at least two defects when HfO2 based transistors are subjected to significant negative bias at modest temperature. Our results indicate generation of multiple interface/near interface defects, likely involving coupling with nearby hafnium atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wilk, G.D., Wallace, R.M., and Anthony, J.M., J. Appl. Phys., 89, 52435275 (2001).Google Scholar
2 Robertson, J., Rep. Prog. Phys., 69, 327396 (2006).Google Scholar
3 Ribes, G., Mitard, J., Denais, M., Bruyere, S., Monsieur, F., Parthasarathy, C., Vincent, E., and Ghibaudo, G., IEEE Trans. Dev. Mater. Reliab., 5, 519 (2005).Google Scholar
4 Zafar, S., Kumar, A., Gusev, E., and Cartier, E., IEEE Trans. Dev. Mater. Reliab., 5, 4564 (2005).Google Scholar
5 Heh, D., Young, C.D., Brown, G.A., Hung, P.Y., Diebold, A., Vogel, E.M., Bernstein, J.B., and Bersuker, G., IEEE Trans. Electron Devices, 54, 13381345 (2007).Google Scholar
6 Young, C.D., Heh, D., Nadkarni, S.V., Rino, C., Peterson, J.J., Barnett, J., Byoung Hun, L., and Bersuker, G., IEEE Trans. Dev. Mater. Reliab., 6, 123131 (2006).Google Scholar
7 Onishi, K., Rino, C., Chang Seok, K., Hag-Ju, C., Hee, K. Young, Nieh, R.E., Jeong, H., Krishnan, S.A., Akbar, M.S., and Lee, J.C., IEEE Trans. Electron Devices, 50, 15171524 (2003).Google Scholar
8 Lenahan, P.M. and Conley, J.F., J. Vac. Sci. Technol., B, 16, 21342153 (1998).Google Scholar
9 Kang, A.Y., Lenahan, P.M., and Conley, J.F., Appl. Phys. Lett., 83, 34073409 (2003).Google Scholar
10 Ryan, J.T., Lenahan, P.M., Kang, A.Y., Jr, J.F.C.., Bersuker, G., and Lysaght, P., IEEE Trans. Nucl. Sci., 52, 22722275 (2005).Google Scholar
11 Lenahan, P.M. and Conley, J.F., IEEE Trans. Dev. Mater. Reliab., 5, 90102 (2005).Google Scholar
12 Ramo, D.M., Gavartin, J.L., Shluger, A.L., and Bersuker, G., Phys. Rev. B, 75, 205336 (2007).Google Scholar
13 Foster, A.S., Sulimov, V.B., Gejo, F.L., Shluger, A.L., and Nieminen, R.M., Phys. Rev. B, 64, 224108 (2001).Google Scholar
14 Xiong, K., Robertson, J., and Clark, S.J., Phys. Status Solidi B-Basic Solid State Phys., 243, 20712080 (2006).Google Scholar
15 Ryan, J.T., Lenahan, P.M., Robertson, J., and Bersuker, G., Appl. Phys. Lett., 92, 123506 (2008).Google Scholar
16 Ryan, J.T., Lenahan, P.M., Bersuker, G., and Lysaght, P., Appl. Phys. Lett., 90, 173513 (2007).Google Scholar
17 Bersuker, G., Park, C.S., Barnett, J., Lysaght, P.S., Kirsch, P.D., Young, C.D., Choi, R., Lee, B.H., Foran, B., Benthem, K. van, Pennycook, S.J., Lenahan, P.M., and Ryan, J.T., J. Appl. Phys., 100, 094108 (2006).Google Scholar
18 Triplett, B.B., Chen, P.T., Nishi, Y., Kasai, P.H., Chambers, J.J., and Colombo, L., J. Appl. Phys., 101, 013703 (2007).Google Scholar
19 Stesmans, A. and Afanas'ev, V.V., J. Appl. Phys., 97, 033510 (2005).Google Scholar
20 Cochrane, C.J., Lenahan, P.M., Campbell, J.P., Bersuker, G., and Neugroschel, A., Appl. Phys. Lett., 90, 123502 (2007).Google Scholar
21 Campbell, J.P., Lenahan, P.M., Krishnan, A.T., and Krishnan, S., Appl. Phys. Lett., 87, 204106 (2005).Google Scholar
22 Campbell, J.P., Lenahan, P.M., Krishnan, A.T., and Krishnan, S., J. Appl. Phys., 103, 044505 (2008).Google Scholar
23 Benthem, K. van, Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T., and Pennycook, S.J., Appl. Phys. Lett., 87, 034104 (2005).Google Scholar