Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T09:37:53.179Z Has data issue: false hasContentIssue false

Defects in Amorphous Silicon

Published online by Cambridge University Press:  15 February 2011

D. K. Biegelsen*
Affiliation:
Xerox Palo Alto Research Centers, Palo Alto, CA 94304
Get access

Abstract

In this paper we argue that amorphous silicon can be treated as a relaxed continuous random network. The optical and electronic properties are controlled by localized gap states which arise from characteristic features of a disordered tetrahedrally-bonded covalent network. Experimental results are reviewed which indicate that the dominant (perhaps only) electrically-active defect in hydrogenated amorphous silicon is the topologically distinct, silicon dangling bond. Finally, we suggest that the same, disorder-related characteristics might also typify the electronic properties of some macroscopic crystalline silicon defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Connell, G. A. N., and Street, R. A., Handbook on Semiconductors, Vol. 3, Keller, S. P., ed. (North Hlolland, New York, 1980) p. 689.Google Scholar
2. Pauling, L., The Nature of the Chemical Bond (Cornell Univ. Press, New York, 1960).Google Scholar
3. Robertson, J., Phys. Chem. Glasses 23, 1 (1982).Google Scholar
4. Phillips, J. C., J. Non-Cryst. Solids 34., 153 (1979).CrossRefGoogle Scholar
5. Brodsky, M. H., and Title, R. S., Phys. Rev. Letters 23, 581 (1969).Google Scholar
6. Brodsky, M. H., Light Scattering Solids, Cardona, M., ed. (Springer-Verlag, New York, 1975), p. 208.Google Scholar
7. Veprek, S., Iqbal, Z., and Sarott, F.-A., Phil. Mag. B 45, 137 (1982).CrossRefGoogle Scholar
8. Brower, K. L., and Beezhold, W., J. Appl. Phys. 43, 3499 (1972).Google Scholar
9. Mayer, J. W., Eriksson, L., Picraux, S. T., and Davies, J. A., Can J. Phys. 46, 663 (1968).Google Scholar
10. Müller, G., and Kalbitzer, S., Phil. Mag. B 41, 307 (1981).Google Scholar
11. Bourgoin, J. C., Morhange, J. F., and Beserman, R., Radiation Effects 22, 205 (1974).Google Scholar
12. Mott, N. F., J. Phys. C 13, 5433 (1980);Google Scholar
12a Thorpe, M. L., Weaire, D., and Alban, R., Phys. Rev. B 7, 3777 (1973);CrossRefGoogle Scholar
12b Joannopoulos, J. D., Phys. Rev. B 16, 2764 (1977).CrossRefGoogle Scholar
13. Biegelsen, D. K., Nuclear and Electron Resonance Spectroscopy, Kaufmann, E. N., and Shenoy, G. K., eds. (North Holland, New York, 1981), p. 85.Google Scholar
14. Dersch, H., Stuke, J., and Beichler, J., Phys. Stat. Sol. B 105, 265 (1981).CrossRefGoogle Scholar
15. Street, R. A., Phys. Rev. B 21, 5775 (1980).CrossRefGoogle Scholar
16. Street, R. A., Knights, J. C., and Biegelsen, D. K., Phys. Rev. B 18, 1880 (1978).Google Scholar
17. Street, R. A., Phil. Mag. B 46, 273 (1982);Google Scholar
17a and Street, R. A. (to be published).Google Scholar
18. Cohen, J. D., and Lang, D. V., Phys. Rev. B 25, 5321 (1982).CrossRefGoogle Scholar
19. Cohen, J. D., Harbison, J. P., and Wecht, K. W., Phys. Rev. Letters 48, 109 (1982).Google Scholar
20. Jackson, W. B., and Amer, N. M., Phys. Rev. B 25, 5559 (1982).Google Scholar
21. Jackson, W. B., and Amer, N. M., Phys. Rev. B (to be published).Google Scholar
22. Jackson, W. B., Solid State Comm. (in press).Google Scholar
23. Spear, W. E., and LeComber, P. G., Phil. Mag. 33, 935 (1976).Google Scholar
24. Street, R. A., Biegelsen, D. K., and Knights, J. C., Phys. Rev. B 24, 969 (1981).Google Scholar
25. Biegelsen, D. K., Street, R. A., and Knights, J. C., AlP Conf. Proc. 73, 166 (1981).Google Scholar
26. Stutzmann, M., and Stuke, J. (to be published).Google Scholar
27. Joannopoulos, J. D., J. Non-Cryst. Sol. 35–36, 781 (1979).Google Scholar
28. Watkins, G. D., and Corbett, J. W., Phys. Rev. 138, A543 (1965).Google Scholar
29. Elliott, S. R., Phil. Mag. B 38, 325 (1978).CrossRefGoogle Scholar
30. Caplan, P. J., Poindexter, E. H., Deal, B. E., and Razouk, R. R., J. Appl. Phys. 50, 5847 (1979).Google Scholar
31. Bronström, C., and Svensson, C., Solid State Comm. 37, 399 (1981).Google Scholar
32. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., in Physics of MOS Insulators, ed. by Lucovsky, G., Pantelides, S. T., and Galeener, F. L. (Pergamon, New York, 1980) p. 311.Google Scholar
33. Werner, J., Jantsch, W., and Queisser, H. J., Sol. State Comm. 42, 415 (1982).Google Scholar
34. Pike, G. E., and Seager, C. H., J. Appl. Phys. 50, 3414 (1979);Google Scholar
34a Colingo, J. P. (to be published).Google Scholar
35. Depp, S. W., Huth, B. G., Juliana, A., and Koepcke, R. W., Grain Boundaries in Semiconductors, Pike, G. E., Seager, C. H., and Leamy, G., eds. (North Holland, New York, 1982) p. 297.Google Scholar
36. Johnson, N. M., Biegelsen, D. K., and Moyer, M. D., Appl. Phys. Letters 40, 882 (1982).Google Scholar