Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T10:05:48.994Z Has data issue: false hasContentIssue false

Defect Thermodynamics, Inhomogeneity, and the Density of Gap States in Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

Howard M. Branz
Affiliation:
Solar Energy Research Institute, 1617 Cole Boulevard, Golden, CO 80401
Marvin Silver
Affiliation:
Dept. of Physics, Univ. of N. Carolina, Chapel Hill, NC 27599
Get access

Abstract

A new hydrogenated amorphous silicon (a-Si:H) density of states (d.O.s.) in+cluding the transition levels of both neutral (T3o) and charged (T3+ and T3) dangling-bond defects is proposed. We derive closed-form and numerical solutions for the d.o.s. from a thermodynamic equilibrium theory of defect concentrations in which material inhomogeneity is assumed to give rise to ∼1020 cm−3 of electrostatic potential fluctuations. The connection between thermodynamic transition level energy and defect formation energy implicit in this and other “defect pool” models is included explicitly in the calculation. We calculate the d.o.s. for a range of parameters and for different values of Fermi energy. We apply the calculated d.o.s. to explain and unify various experimental results in a-Si:H. In particular, we reconcile recent depletion-width-modulated ESR data with the near-perfect Curie law T-dependence of the dangling-bond spin density observed by several groups. It is seen +that the depletion results in roughly equal numbers of T3T3–>° and T3°–>T3+ transitions despite the positive value of effective correlation energy. We also discuss possible sources of the short-to-medium range potential fluctuations in amorphous silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, Z E. and Wagner, S., Phys. Rev. B32, 5510 (1985);Google Scholar
Street, R. A., Kakalios, J., and Hayes, T. M., Phys. Rev. B34, 3030 (1986);Google Scholar
McMahon, T. J. and Tsu, R., Appl. Phys. Lett. 51, 412 (1987);Google Scholar
Street, R. A. and Winer, K., Phys. Rev. B40, 6236 (1989).Google Scholar
3. Pierz, K., Fuhs, W., and Mell, H.., J. Non-Cryst. Solids 114, 651 (1989).Google Scholar
4. Zafar, S. and Schiff, E. A., J. Non-Cryst. Solids 114, 618 (1989).Google Scholar
5. Bar-Yam, Y., Adler, D., and Joannopoulos, J. D., Phys. Rev. Lett. 57, 467 (1986).Google Scholar
6. Smith, Z E., in Advances in Amorphous Semiconductors, edited by Fritzsche, H. (World Scientific, Singapore, 1988), p. 409;Google Scholar
Winer, K., Phys. Rev. Lett. 63, 1487 (1989).Google Scholar
7. Branz, H. M. and Silver, M., J. Non-Cryst. Solids 114, 639 (1989);Google Scholar
Branz, H. M. and Silver, M., unpublished.Google Scholar
8. Essick, J. M. and Cohen, J. D., J. Non-Cryst. Solids 114, 435 (1989).Google Scholar
9. Baronovskii, S. D. and Silver, M., Phil. Mag. Lett. 61, 77 (1990).Google Scholar
10. Ley, L., Reichardt, J., and Johnson, R. L., Phys. Rev. Lett. 49, 1664 (1982).Google Scholar
11. Kelfve, P., Blomster, B., Siegbahn, H., Sanhueza, E., and Goscinski, O., Phys. Scr. 21, 75 (1980);Google Scholar
King, H., Kramer, B., and MacKinnon, A., Solid State Commun. 47, 683 (1983).Google Scholar
12. Baum, J., Gleason, K. K., Pines, A., Garroway, A. N., and Reimer, J. A., Phys. Rev. Lett. 56, 1377 (1986).Google Scholar
13. Reimer, J. A., personal communication (1990).Google Scholar
14. Winer, K. and Cardona, M., Solid State Commun. 60, 207 (1986).Google Scholar
15. Jeffrey, F. R., Murphy, P. D., and Gerstein, B. C., Phys. Rev. B23, 2099 (1981).Google Scholar
16. Pauling, L., The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, 1960) pp. 78, 101.Google Scholar
17. Mahan, A. H., Williamson, D. L., Nelson, B. P., and Crandall, R. S., Phys. Rev. B40, 12024 (1989).Google Scholar
18. Landau, L. D. and Lifschitz, E. M., Electrodynamics of Continuous Media (Pergamon Press, Oxford, 1960) p. 40.Google Scholar
19. Shockley, W. and Moll, J., Phys. Rev. 119, 1480 (1960).Google Scholar
20. Branz, H. M., Phys. Rev. B39, 5107 (1987).Google Scholar
21. Stutzmann, M. and Jackson, W. B., Solid State Commun. 62, 153 (1987).Google Scholar
22. Wronski, C. R., Abeles, B., Tiedje, T., and Cody, G. D., Solid State Commun. 44, 1423 (1982);Google Scholar
Kocka, J., J. Non-Cryst. Solids 90, 91 (1987).Google Scholar
23. Street, R. A., Phys. Rev. B21, 5775 (1980).Google Scholar
24. Street, R. A., J. Non-Cryst. Solids 77 & 78, 1 (1985).Google Scholar
25. Dersch, H., Stuke, J., and Beichler, J., Phys. Stat. Sol. B105, 265 (1981).Google Scholar
26. Brodsky, M. H. and Title, R. S., Phys. Rev. Lett. 23, 581 (1969);Google Scholar
Stutzmann, M. and Biegelsen, D. K., unpublished.Google Scholar
27. Street, R. A. and Biegelsen, D. K., J. Non-Cryst. Solids 35/36, 651 (1980).Google Scholar
28. Ristein, J., Hautala, J., and Taylor, P. C., Phys. Rev. B40, 88 (1989).Google Scholar
29. Branz, H. M., Phys. Rev. B41, April 15, 1990 (in press).Google Scholar
30. Shimizu, T., Kidoh, H., Morimoto, A., and Kumeda, M., Jpn. J. of Appl. Phys. 28, 586 (1989).Google Scholar
31. Schiff, E. A., personal communication (1989).Google Scholar