Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T19:50:52.464Z Has data issue: false hasContentIssue false

Defect Structures in GaP/Si

Published online by Cambridge University Press:  21 February 2011

Srikanth B. Samavedam
Affiliation:
School of Materials Engineering,
Eric P. Kvam
Affiliation:
School of Materials Engineering,
Greg Ford
Affiliation:
Department of Materials Science and Engineering, Northwestern University.
Bruce W. Wessels
Affiliation:
Department of Materials Science and Engineering, Northwestern University.
T. P. Chin
Affiliation:
School of Electrical Engineering, Purdue University.
Jerry M. Woodall
Affiliation:
School of Electrical Engineering, Purdue University.
Get access

Abstract

The heteroepitaxial growth of gallium phosphide on silicon (GaP/Si) is a useful step towards integration of III-V based devices onto silicon. GaP layers grown on silicon substrates of different orientations using metalorganic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) were characterized using transmission electron microscopy (TEM) with an attempt to understand the epilayer growth characteristics. Despite the fact that the GaP/Si system has a low misfit (≈0.4 %), a high density of crystal stacking defects was commonly observed. Inversion domain boundaries (IDBs) were another common defect observed in regions where the fault density was reduced.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Andre, J. P., Hallais, J. and Schiller, C., J. Crystal Growth, vol. 31, 147 (1975).Google Scholar
2 Al-Jassim, M. M., Olson, J. M. and Jones, K. M., Mat. Res. Soc. Proc., 62, 49 (1986).Google Scholar
3 Morizane, K., J Crystal Growth, 38, 249 (1977).Google Scholar
4 Soga, T., george, T., Suzuki, T., Jimbo, T. and Umeno, M., Mat. Res. Soc. Proc., 221, 155 (1991).Google Scholar
5 Kawanami, H., Sakamoto, T., Takahashi, T., Suzuki, E. and Nagai, K., Jpn. J. Appl. Phys., 21, L68 (1982).Google Scholar
6 Wright, S. L., Kroemer, H. and Inada, M., J Appl. Phys., 55, 2916 (1984).Google Scholar
7 Kelliher, J. T. and Bachman, K. J., Mat. Res. Soc. Proc., 282, 51 (1993)Google Scholar
8 Blakeslee, A., Al-Jassim, M. M. and Asher, S. E., Mat. Res. Soc Symp. Proc., 91, 105 (1987).Google Scholar
9 Soga, T., george, T., Suzuki, T., Jimbo, T., Umeno, M. and Weber, E. R., Appl. Phys. Lett., 58, 2108 (1991).Google Scholar
10 Pirouz, P., Ernst, F. and Cheng, T. T., Mat. Res. Soc. Symp. Proc., 116(1988).Google Scholar
11 Soga, T., Nishikawa, H., Jimbo, T. and Umeno, M., Jpn. J. Appl. Phys., 32, 4912 (1993)Google Scholar
12 Ernst, F. and Pirouz, P., J. Mater. Res., 4, 834 (1989).Google Scholar
13 Hull, R. and Bean, J. C., Critical Reviews in Solid State and Materials Sciences, 17, 507 (1992).Google Scholar
14 Georgakilas, A., Stoemenos, J., Tsagaraki, K., Komninou, Ph., Flevaris, N., Panayotatos, P. and Christou, A., J. Mater. Res., 8 1908 (1993).Google Scholar
15 Kroemer, H., J. Crystal Growth, 81, 193 (1987).Google Scholar