Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T16:59:26.988Z Has data issue: false hasContentIssue false

DEFECT SELECTIVE ETCHING OF THICK AlN LAYERS GROWN ON 6H-SIC SEEDS – A TRANSMISSION ELECTRON MICROSCOPY STUDY

Published online by Cambridge University Press:  01 February 2011

Luke Owuor Nyakiti
Affiliation:
[email protected], Texas Tech University, Department of Mechanical Engineering, 7th Street & Boston, Lubbock, TX, 79409-1021, United States
Jharna Chaudhuri
Affiliation:
[email protected], Texas Tech University, Mechanical Engineering, 7th Street & Boston Avenue, Lubbock, TX, 79409-1021, United States
Ed A Kenik
Affiliation:
[email protected], Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831-6064, United States
Peng Lu
Affiliation:
[email protected], Kansas State University, Department of Chemical Engineering, Manhattan, KS, 66506, United States
James H Edgar
Affiliation:
[email protected], Kansas State University, Department of Chemical Engineering, Manhattan, KS, 66506, United States
Get access

Abstract

In the present study, the type and densities of defects in AlN crystals grown on 6H-SiC seeds by the sublimation-recombination method were assessed. The positions of the defects in AlN were first identified by defect selective etching (DSE) in molten NaOH-KOH at 400 °C for 2 minutes. Etching produced pits of three different sizes: 1.77 ìm, 2.35 ìm , and 2.86 ìm. The etch pits were either aligned together forming a sub-grain boundary or randomly distributed. The smaller etch pits were either isolated or associated with larger etch pits. After preparing cross-sections of the pits by the focused ion beam (FIB) technique, transmission electron microscopy (TEM) was performed to determine which dislocation type (edge, mixed or screw) produced a specific etch pit sizes. Preliminary TEM bright field and dark field study using different zone axes and diffraction vectors indicates an edge dislocation with a Burgers vector 1/3 is associated with the smallest etch pit size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rojo, J. C., Schowalter, L. J., Slack, G., Morgan, K., Barani, J., Schujman, S., Biswas, S., Raghothamachar, B., Dudley, M., Shur, M., Gaska, R., Johnson, N. M., and Kneissl, M., Mat. Res. Soc. Symp. Proc. 722, K1.1 (2002).10.1557/PROC-722-K1.1Google Scholar
2. Liu, L. and Edgar, J. H., Mater. Sci. Eng. R 37, 61 (2002)Google Scholar
3. Slack, G. A. and McNelly, T.F., J. Cryst. Growth 34, 263 (1976).Google Scholar
4. Liu, L., Liu, B., Edgar, J.H., Rajasingam, S., and Kuball, M., J. Appl. Phys. 92 5183 (2002)Google Scholar
5. Edgar, J.H., Liu, L., Liu, B., Zhuang, D., Chaudhuri, J., Kuball, M, and Rajasingam, S., J. Cryst. Growth 246, 187 (2002).Google Scholar
6. Lu, P., Edgar, J.H., Lee, R.G., and Chaudhuri, J., J. Cryst. Growth 300 336 (2007).Google Scholar
7. Lu, P., Edgar, J.H., Cao, C., Hohn, K., Dalmau, R., Schlesser, R., and Sitar, Z., submitted to J. Cryst. Growth.Google Scholar
8. Schowalter, L. J., Slack, G. A., Whitlock, J. B., Morgan, K., Schujman, S. B., Raghothamachar, B., Dudley, M., and Evans, K. R., phys. stat. sol. (c) 0, 1997 (2003).Google Scholar
9. Sangwal, K., Etching of Crystals: Theory, Experiment and Applications (North-Holland, Amsterdam, 1987) pp. 87160.Google Scholar
10. Weyher, J.L., Fornari, R., Goeroeg, T., Kelly, J.J., and Erne, B., J. Cryst. Growth 141, 57 (1994).Google Scholar
11. Weyher, J. L., Kamler, G., Nowak, G., Borysiuk, J., Lucznik, B., Krysko, M., Grzegory, I., and Porowski, S., J. Cryst. Growth 281, 135 (2005).10.1016/j.jcrysgro.2005.03.020Google Scholar
12. Bickermann, M., Schmidt, S., Epelbaum, B. M., Heimann, P., Nagata, S., and Winnacker, A., J. Crystal Growth 300, 299 (2006).Google Scholar
13. Bickermann, M., Epelbaum, B.M., and Winnacker, A., J. Cryst. Growth 269, 432 (2004).10.1016/j.jcrysgro.2004.05.071Google Scholar
14. Epelbaum, B. M., Bickermann, M., and Winnacker, A., J. Cryst. Growth 275, 479 (2005).Google Scholar
15. Epelbaum, B. M., Seitz, C., Magerl, A., Bickermann, M., and Winnacker, A., J. Cryst. Growth 265, 577 (2004).Google Scholar
16. Zhuang, D. and Edgar, J. H., Mater. Sci. Eng. R 48, 1 (2005).10.1016/j.mser.2004.11.002Google Scholar
17. Bondokov, R T., Morgan, K E., Shetty, R, Liu, W, Slack, G A., Goorsky, M, and Schowalter, L J., (Mater. Res. Soc. Symp. Proc. 892, Pittsburgh, PA, 2006) FF3003.1.Google Scholar
18. Weyher, J. L., Superlatt. Microstruc 40 279 (2006).10.1016/j.spmi.2006.06.011Google Scholar
19. Weyher, J. L. and Macht, L., Eur. Phys. J. Appl. Phys. 27, 37 (2004).10.1051/epjap:2004092Google Scholar
20. Weyher, J. L., Brown, P.D., Rouviere, J.L., Wosinski, T., Zauner, A.R.A., and Grzegory, I., J. Cryst. Growth 210, 151 (2000).Google Scholar
21. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S., and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000).Google Scholar
22. Shiojima, K., J. Vac. Sci. Technol. B 18, 37 (2000).Google Scholar
23. Giannuzzi, L. A., Drown, J. L., Brown, S. R., Irwin, R. B., and Stevie, F.A., Microsc. Res. Techniq. 41, 285 (1998).10.1002/(SICI)1097-0029(19980515)41:4<285::AID-JEMT1>3.0.CO;2-Q3.0.CO;2-Q>Google Scholar
24. Goodman, P. and Lempfuhl, G., Acta Crystallogr., Sect. A: Cryst. Phys. Diffr., Theor. Gen. Crystallogr. 24, 339 (1968).10.1107/S0567739468000677Google Scholar