Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T19:23:06.705Z Has data issue: false hasContentIssue false

Deep Level Generation-Annihilation in Nitrogen Doped FZ Crystals

Published online by Cambridge University Press:  28 February 2011

T. Abe
Affiliation:
Shin-Etsu Handotai Co., 2–13−1 Isobe, Annaka-Shi Gunma-Ken 379−01 Japan
H. Harada
Affiliation:
Shin-Etsu Handotai Co., 2–13−1 Isobe, Annaka-Shi Gunma-Ken 379−01 Japan
N. Ozawa
Affiliation:
Shin-Etsu Handotai Co., 2–13−1 Isobe, Annaka-Shi Gunma-Ken 379−01 Japan
K. Adomi
Affiliation:
Shin-Etsu Handotai Co., 2–13−1 Isobe, Annaka-Shi Gunma-Ken 379−01 Japan
Get access

Abstract

Nitrogen atoms exist in silicon as non-reactive nitrogen molecules. This is concluded from two I-R absorption experiments: one is the nitrogen isotope effects on N- N pairs and the other is silicon isotope shifts at 10 K. Intrinsic resistivities (over 20 K ohm-cm) are obtained by annealing at 1000°C, 1 min. in N2 in both p- and n-type nitrogen doped thin wafers. Resistivity increases are due to deep- level generations: 0.66 eV above the valence band for p-type and mainly 0.44 eV below the conduction band for n-type material. These deep levels are considered to be formed by nitrogen pairs and divacancies which are incorporated during growth. Since divacancies are easy to out diffuse to the wafers surface, the deep levels are also irreversibly removed. Diffusion coefficient of Si intersititialswici'ch are annihilated with divacancies in the lattice are calculated as 6×10−6cm2/s and 2×10−6cm2/s at 900°C and 1000°C respectively. Migration energy of Si interstitials is about 4.5 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tan, T.Y., Gardner, E.E. and Tice, W.K, Appl. Phys. Lett. 30, 175 (1977).CrossRefGoogle Scholar
2. Sylwestrowcz, W.D., Phil. Mag. 7, 1825 (1962).CrossRefGoogle Scholar
3. Abe, T., Kikuchi, K., Shirai, S. and Muraoka, S., Semiconductor Silicon 1981, edited by Huff, H.R. et al. (Electrochem. Soc., Pennington, 1981), P. 54.Google Scholar
4. Abe, T., Masui, T., Harada, H. and Chikawa, J., VLSI Science and Technology 1985, edited by Bullis, W.M. et al. (Electrochem. Soc., Pennington, 1985), P. 43.Google Scholar
5. Sumino, K., Yonenaga, I., Imai, M. and Abe, T., J. Appl. Phys. 54, 5016 (1983).CrossRefGoogle Scholar
6. Abe, T., Harada, H. and Chikawa, J., Defects in Semiconductors II, edited by Mahajan, S. et al. (North-Holland, 1983), P.1.Google Scholar
7. Stein, H.J., Defects in Semiconductors, edited by Kimerling, L.C. et al. (The Metallurgical Soc. AIME, 1984), P. 839.Google Scholar
8. Yatsurugi, Y., Akiyama, N., Endo, Y. and Nozaki, T., J. Electrochem. Soc. 120, 975 (1973).CrossRefGoogle Scholar
9. Bosomworth, D.R., Hayes, W., Spray, A.R.L. and Watkins, G.D., Proc. Roy. Soc. Lond. A 317, 133 (1970).Google Scholar
10. Masui, T., to be published.Google Scholar
11. Tajima, M., Masui, T., Abe, T. and Nazaki, T., Jpn. J. Appl. Phys. 20, L423 (1981).CrossRefGoogle Scholar
12. Tokumaru, Y., Okushi, H., Masui, T. and Abe, T., Jpn. Appl. Phys. 21, L443 (1982).CrossRefGoogle Scholar
13. Nauka, K., Lagowski, J. and Gatos, H.C., MRS Symp. Proc. Vol.36, edited by Fair, R.B. et al. (M.R.S., Pittsburgh, 1985).Google Scholar
14. Webb, W.W., J. Appl. Phys. 33, 1961 (1962).CrossRefGoogle Scholar
15. Keller, W. and Muhlbauer, A., Lattice Defects in Semiconductors, (Inst. Phys. Conf. Soc. No. 23, 1974), P. 538.Google Scholar
16. Takaoka, H., Osaka, J. and Inoue, N., Jpn. J. Appl. Phys. 18−1, 178 (1979).CrossRefGoogle Scholar
17. Yoshida, M. and Saito, K., Jpn. J. Appl. Phys. 6 573 (1967).CrossRefGoogle Scholar