Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:47:40.364Z Has data issue: false hasContentIssue false

Deep Level Formation in Undoped and Oxygen-Doped GaN

Published online by Cambridge University Press:  17 March 2011

J. M. Gregie
Affiliation:
Materials Research Center and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
R. Y. Korotkov
Affiliation:
Materials Research Center and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
B. W. Wessels
Affiliation:
Materials Research Center and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
Get access

Abstract

Deep level defects in oxygen doped GaN grown by metal-organic vapor phase epitaxy were investigated. Using steady-state photocapacitance (SSPC) spectroscopy, three deep levels with optical ionization energies of 1.0, 1.4, and 3.25 eV were observed in both nominally undoped and oxygen-doped samples. The total deep level defect concentrations ranged from 6 × 1015 cm-3 in undoped films to 3 × 1016 cm-3 in oxygen-doped films. The concentration of the 3.25 eV level defect increased upon oxygen doping, while the concentrationof the 1.0 and 1.4 eV levels were essentially dopant independent. From the measured concentrations the formation energies of the defects were calculated and compared to energies calculated using density functional theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Klein, P. B., Freitas, J. A., Binari, S. C., and Wickenden, A. E., Appl. Phys. Lett. 75 4016 (1999).Google Scholar
2 Gotz, W., Johnson, N. M., Street, R. A., Amano, H., and Akasaki, I., Appl. Phys. Lett. 66 1340 (1995).Google Scholar
3 Yi, G. C. and Wessels, B. W., Appl. Phys. Lett. 68 3769 (1996).Google Scholar
4 Hacke, P. and Okushi, H., Appl. Phys. Lett. 71 524 (1997).Google Scholar
5 Hierro, A., Ringel, S. A., Hansen, M., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl.Phys. Lett. 77 1499 (2000).Google Scholar
6 Neugebauer, J. and Walle, C. G. Van de, in Advances in Solid State Physics; Vol. 35 (1996), p. 25.Google Scholar
7 Korotkov, R. Y. and Wessels, B. W., MRS Internet J. Nitride Semicond. Res. 5S1, W3.80 (2000)Google Scholar
8 Grimmeiss, H. G., Ann. Rev. Mater. Sci. 7 341 (1977).Google Scholar
9 Lucovsky, G., Solid State Commun. 3 299 (1965).Google Scholar
10 Calleja, E., Sanchez, F. J., Basak, D., SanchezGarcia, M. A., Munoz, E., Izpura, I., Calle, F., Tijero, J. M. G., SanchezRojas, J. L., Beaumont, B., Lorenzini, P., and Gibart, P., Phys. Rev. 55 4689 (1997).Google Scholar
11 Hierro, A., Kwon, D., Ringel, l. S. A., Hansen, M., Speck, J. S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 76 3064 (2000).Google Scholar
12 Fischer, S., Wetzel, C., Haller, E. E., and Meyer, B. K., Appl. Phys. Lett. 67, 1298 (1995)Google Scholar
13 Smith, M., Chen, G. D., Lin, J. Y., Jiang, H. X., Salvador, A., Sverdlov, B. N., Botchkarev, A., Morkoc, H., and Goldenberg, B., Appl. Phys. Lett. 68, 1883 (1996)Google Scholar
14 Yamamoto, T. and Katayami-Yoshida, H., Jpn. J. Appl. Phys. 36 L180 (1997).Google Scholar
15 Mattila, T. and Nieminen, R. M., Phys. Rev. B 55 9571 (1997).Google Scholar
16 Neugebauer, J. and Walle, C. G. Van de, Appl. Phys. Lett. 69 503 (1996).Google Scholar