Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:34:11.353Z Has data issue: false hasContentIssue false

Deep Defects in Fe-Doped GaN Layers Analysed by Electrical and Photoelectrical Spectroscopic Methods

Published online by Cambridge University Press:  01 February 2011

H. Witte
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany
K. Fluegge
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany
A. Dadgar
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany
A. Krtschil
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany
A. Krost
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany
J. Christen
Affiliation:
Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg, D-39016 Magdeburg, Germany
Get access

Abstract

The electrical activity of iron in Fe- doped, and in Si and Mg co-doped GaN layers grown on sapphire substrates by metal organic vapor phase epitaxy was studied as shown by temperature dependent Hall Effect (TDH) measurements. In all samples iron doping generates an acceptor defect, which compensates donors in n-type GaN. Furthermore, iron doping causes strong potential inhomogeneities, which decrease the Hall mobility in the layers. To verify, if iron creates only hole traps, defects in n-type Si:Fe and Fe doped samples were investigated. The well known dominant electron traps in n-type GaN at 520 – 550 meV and 480 meV were found by deep level transient spectroscopy and thermal admittance spectroscopy, respectively. A high Fe-doped GaN layer shows a low p-type conductivity dominated by the iron acceptor. An activation energy of EV+ 460 meV was determined by TDH indicating, that the iron acceptor correlates with this defect level.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

/1/ Cao, X.A., Pearton, S.J., Dang, G.T., Zhang, A.P., Ren, F., Wilson, R.G., Van Hove, J.M.; J. Appl. Phys. 87, 1091 (2000)Google Scholar
/2/ Polykov, A.Y., Smirnov, N.B., Govorkov, A.V., Pashkova, N.V., Shlensky, A.A., Pearton, S.J., Overberg, M.E., Abernathy, C.R., Zavada, J.M., Wilson, R.G.; J. Appl. Phys. 93, 5388 (2003)Google Scholar
/3/ Polyakov, A.Y., Smirnov, N.B., Govorkov, A.V., Pearton, S.J.; Appl. Phys. Lett. 83, 3314 (2003)Google Scholar
/4/ Krtschil, A., Witte, H., Lisker, M., Christen, J., Birkle, U., Einfeldt, S., Hommel, D.; J. Appl. Phys. 84, 4020 (1998)Google Scholar
/5/ Krtschil, A., Kielburg, A., Witte, H., Krost, A., Christen, J., Wenzel, A., Rauschenbach, B.; Appl. Phys. Lett. 82, 403 (2003)Google Scholar
/6/ Dang, G., Cao, X.A., Ren, F., Pearton, S.J., Han, J., Baca, A.G., Shul, R.J., Wilson, R.G.; MRS Internet J. Nitrode Semicond. Res.; 5S1, W11.68 (2000)Google Scholar
/7/ Krtschil, A., Dadgar, A., Krost, A.; Appl. Phys. Lett. 82, 2263 (2003)Google Scholar
/8/ Witte, H., Krtschil, A., Lisker, M., Christen, J., Krost, A., Kuhn, B., Scholz, F.; Mater. Science and Engin. B 82, 85 (2001)Google Scholar
/9/ Heitz, R., Maxim, P., Eckey, L., Thurian, P., Hoffmann, A., Broser, I., Pressel, K., Meyer, B.K.; Physical Review B 55, 4382 (1997)Google Scholar
/10/ Hacke, P., Detchprohm, T., Hiramatsu, K., Sawaki, N., Takatomo, T., Miyake, K.; J. Appl. Phys. 76, 304 (1994)Google Scholar