Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T16:46:05.505Z Has data issue: false hasContentIssue false

Deciphering the Vibrational Spectrum of Interstitial H2 in Si

Published online by Cambridge University Press:  17 March 2011

Michael Stavola
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015, USA
E Elinor Chen
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015, USA
W. Beall Fowler
Affiliation:
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015, USA
Get access

Abstract

H2 is a fascinating molecule whose properties revealed the influence of nuclear spin on the molecular wave function in the 1920s. As an interstitial defect in Si, the H2 molecule has given rise to a number of perplexing puzzles since the discovery of its vibrational spectrum. The absence of an ortho-para splitting for the H2 vibrational line and an apparent low symmetry found in stress experiments misled several researchers into thinking that interstitial H2 in Si must have a barrier to rotation. Our discovery of a new vibrational line for HD in Si and its interpretation, along with the recognition that certain transitions are possible for HD, but not for H2 or D2, establish that H2 in Si is a nearly free rotator after all. Additional puzzles such as the anomalous intensity of the HD line, the absence of an isotope dependence for the uniaxial stress splitting of the H2 and D2 vibrational lines, and the properties of an O-H2 complex are also explained naturally. Recent Raman studies confirm that interstitial H2 in Si is a free rotator but raise interesting new questions about the diffusivities of the ortho and para species.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Mainwood, A. and Stoneham, A. M., Physica 116B (1983) 101.Google Scholar
[2] Corbett, J. W., Sahu, S. N., Shi, T. S., and Snyder, L. C., Phys. Lett. 93A (1983) 303.Google Scholar
[3] Estreicher, S. K., Mat. Sci. Eng. R 14 (1995) 319.Google Scholar
[4] Hall, R. N., J. Elect. Mat. 14a (1985) 759.Google Scholar
[5] Vetterhöffer, J., Wagner, J. and Weber, J., Phys. Rev. Lett. 77 (1996) 5409.Google Scholar
[6] Pritchard, R. E., Ashwin, M. J., Tucker, J. H., and Newman, R. C., Phys. Rev. B 57 (1998) 15048.Google Scholar
[7] Pritchard, R. E., Ashwin, M. J., Tucker, J. H., Newman, R. C., Lightowlers, E. C., Binns, M. J., McQuaid, S. A., and Falster, R., Phys. Rev. B 56 (1997) 13118.Google Scholar
[8] Leitch, A. W. R., Alex, V., and Weber, J., Phys. Rev. Lett. 81 (1998) 421.Google Scholar
[9] Okamoto, Y., Saito, M., and Oshiyama, A., Phys. Rev. B 56 (1997) 10016.Google Scholar
[10] Walle, C. G. Van de, Phys. Rev. Lett. 80 (1998) 2177.Google Scholar
[11] Walle, C. G. Van de and Goss, J. P., Mater. Sci. Eng. B 58 (1999) 17.Google Scholar
[12] Hourahine, B., Jones, R., Öberg, S., Newman, R. C., Briddon, P. R., and Roduner, E., Phys. Rev. B 57 (1998) 12666.Google Scholar
[13] Estreicher, S. K., Wells, K., Fedders, P. A. and Ordejón, P., J. Phys.: Condens. Matter 13 (2001) 6271.Google Scholar
[14] Fowler, W. B., Walters, P. and Stavola, M., Phys. Rev. B 66 (2002) 075216.Google Scholar
[15] Zhou, J. A. and Stavola, M., Phys. Rev. Lett. 83, (1999) 1351; J. A. Zhou, E Chen, and M. Stavola, Phys. Rev. Lett. 84 (2000) 4778.Google Scholar
[16] Newman, R. C., Pritchard, R. E., Tucker, J. H., and Lightowlers, E. C., Phys. Rev. B 60 (1999) 12775 Google Scholar
[17] Chen, E E., M, M. Stavola, Fowler, W. B., and Walters, P., Phys. Rev. Lett. 88 (2002) 105507.Google Scholar
[18] Chen, E E., M, M. Stavola, Fowler, W. B. and Zhou, J. A., Phys. Rev. Lett. 88 (2002) 245503.Google Scholar
[19] Chen, E E., M, M. Stavola, and Fowler, W. B., Phys. Rev. B 65 (2002) 245208.Google Scholar
[20] Lavrov, E. V. and Weber, J., Phys. Rev. Lett. 89 (2002) 215501.Google Scholar
[21] Eisberg, R. and Resnick, R., Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd ed., New York, Wiley, 1985.Google Scholar
[22] Hourahine, B. and Jones, R., Phys. Rev. B 67 (2003) 121205.Google Scholar
[23] Saunders, V. R., Dovesi, R., Roetti, C., Causá, M., Harrison, N. M., Orlando, R., and Zicovich-Wilson, C. M., CRYSTAL 98 User's Manual, Univ. Torino, Torino, Italy, 1998.Google Scholar
[24] Kaplyanskii, A. A., Opt. Spectrosc. (USSR) 16 (1964) 557.Google Scholar
[25] Markevich, V. P., Suezawa, M., and Sumino, K., Mater. Sci. Forum 196–201 (1995) 915.Google Scholar
[26] Markevich, V. P. and Suezawa, M., J. Appl. Phys. 83 (1998) 2988.Google Scholar
[27] Stavola, M., Chen, E E., Fowler, W. B., and Shi, G. A., Physica B 340–342 (2003) 58.Google Scholar