Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:07:17.334Z Has data issue: false hasContentIssue false

D Impurities in a Quasi-Two-Dimensional System: Statistics and Screening

Published online by Cambridge University Press:  22 February 2011

W. J. Li
Affiliation:
SUNY at Buffalo, Buffalo, NY 14260
J. L. Wang
Affiliation:
SUNY at Buffalo, Buffalo, NY 14260
J.-P. Cheng
Affiliation:
Francis Bitter National Magnet Lab. MIT Cambridge, MA 02139
S. Holmes
Affiliation:
Imperial College, London, UK
B. D. Mccombe
Affiliation:
SUNY at Buffalo, Buffalo, NY 14260
W. Schaff
Affiliation:
Cornell University, Ithaca, NY 14853
Get access

Abstract

Far infrared spectroscopic studies of electron-density- and magnetic-field-dependenceof manyelectron effects on silicon donor impurities confined in GaAs quantum wells are presented. At low excess electron densities, transitions from D singlet and triplet states are observed. Temperature- and polarization-dependence measurements show that the relative absorption strengths of various spectroscopic features (D0, D, and CR) are in qualitative agreement with a statistical calculation in thermal equilibrium in high magnetic fields. At large excess electron densities, the “D” transition energy shifts to higher energy when electron density is increased, and the magnetic-field dependence of the transition energy exhibits discontinuities in slope at integer filling factors. The spectroscopic features and their relation to excess free carriers and the role of screening and correlation are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Huant, S., Najda, S. P., and Etienne, B., Phys. Rev. lett. 65, 1486 (1990); R. Mueller, D. M. Larsen, J. Waldman, and W. D. Goodhue, Phys. Rev. Lett. 68, 2204 (1992);CrossRefGoogle Scholar
2. Holmes, S., Cheng, J.-P., and McCombe, B. D., Phys. Rev. Lett. 69, 2571 (1992).CrossRefGoogle Scholar
3. See e.g.,Ando, T., Fowler, A. B., and Stern, F., Rev. Modern Phys. 54, 437 (1982); J. A. Brum, G. Bastard, And C. Guillemot, Phys. Rev. B 30, 905 (1984); C. Guilemot, Phys. Rev. B 31, 1428 (1985); A. Gold, A. Phys. B 74, 53 (1988); U. Wulf, V. Gudmundsson, and R. R. Gerhardts, Phys. Rev. B 38, 4218 (1988).CrossRefGoogle Scholar
4. Ando, T. and Uemura, Y., J. Phys. Soc. Jpn. 37, 1044 (1974).CrossRefGoogle Scholar
5. Kohn, W., Phys. Rev. 123, 1242 (1961).CrossRefGoogle Scholar
6. See e.g., Schlesinger, Z., Allen, S. J., Hwang, J. C., Platzman, P. M., and Tzoar, N., Phys. Rev. B 30, 435 (1984); J.-P. Cheng and B. D. McCombe, Phys. Rev. lett. 64, 3177 (1990).CrossRefGoogle Scholar
7. Cheng, J.-P., Wang, Y. J., McCombe, B. D., and Schaff, W., Phys. Rev. Lett. 70, 489 (1993).CrossRefGoogle Scholar
8. Hawrylak, P., Solid State Commun., submitted, 1993.Google Scholar
9. Hawrylak, P., preprint, 1993.Google Scholar
10. MacDonald, A. H., Solid State Commun. 84, 109 (1992).CrossRefGoogle Scholar
11. Dzyubenko, A. B., Phys. Lett. A165, 357 (1992).CrossRefGoogle Scholar
12. Greene, R. L., and Bajaj, K. K., Phys. Rev. B 31, 913 (1985).CrossRefGoogle Scholar
13. Larsen, D. M., Phys. Rev. B, 20, 5217 (1979).CrossRefGoogle Scholar
14. Dzyubenko, A. B., JETP Lett. 57, 507 (1993).Google Scholar
15. Pang, T., and Louie, S. G., Phys. rev. lett. 65, 1635 (1991).CrossRefGoogle Scholar