Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:44:49.616Z Has data issue: false hasContentIssue false

CW Backside Laser Gettering

Published online by Cambridge University Press:  22 February 2011

Gilbert Hawkins
Affiliation:
Eastman Kodak Company, Research Laboratories Rochester, New York 14650
George Erikson
Affiliation:
Eastman Kodak Company, Research Laboratories Rochester, New York 14650
Get access

Abstract

A variety of backside damage techniques are available for gettering heavy-metal contaminants in silicon wafers. These include mechanical damage, ion implantation, thin film deposition, and pulsed–laser surface melting. In each case, strain fields and microscopic defects induced by the processing trap impurities as they diffuse through the wafer during subsequent high–temperature processing steps. We examine the defect structures produced by CW laser gettering, describe the dependence of gettering efficiency on wafer oxygen content and processing conditions, and demonstrate that CW laser processing can be an effective gettering technique even when the number of laser scan lines is reduced to make wafer processing acceptably rapid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Monkowski, J. R., Solid State Technol., 24, 44 (July 1981) and references therein.Google Scholar
2.Schmidt, P. F. and Pearce, C. W., J. Electrochem. Soc., 128, 630 (1981).Google Scholar
3.Schroder, D. K., IEEE Trans. Electron Dev., ED29, 1336 (1982).Google Scholar
4.Nassibiam, A. G. and Golja, B., J. Appl. Phys., 53, 6168 (1982).Google Scholar
Rozgonyi, G. A., Deysher, R. P., and Pearce, C. W., J. Electrochem. Soc., 123, 1910 (1976).Google Scholar
Rozgonyi, G. A. and Kushner, R. A., J. Electrochem. Soc., 123, 570 (1976).Google Scholar
Prussin, S., Li, S. P., and Cockium, R. H., 153rd meeting Electrochem. Soc., Seattle, Abstract 261 (1978).Google Scholar
Katz, L. E., Pearce, C. W., and Schmidt, P. F., 156th meeting Electrochem. Soc., Los Anqeles, Abstract 485 (1979).Google Scholar
Seidel, T. E., Meek, R. L., and Cullis, A. G., J. Appl. Phys., 46, 600 (1975).Google Scholar
Young, D. R. and Osburn, C. M., J. Electrochem. Soc., 120, 1578 (1973).Google Scholar
5.Katz, L. E., Schmidt, P. F., and Pearce, C. W., J. Electrochem. Soc., 128, 620 (1981).Google Scholar
6.Gat, A. and Gibbons, J. F., Appl. Phys. Lett., 32, 142 (1978).Google Scholar
See also Klimenko, A. G., Klimenko, E. A., and Donim, V. I., Sov. J. Quant. Electron., 5, 1289 (1976).Google Scholar
7. Monsanto Co., St. Louis, Missouri. A technical discussion of the Monsanto process is given by Craven, R. A. and Korb, H. W. in Solid State Technol., 24, 55 (July 1981).Google Scholar