Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:22:05.788Z Has data issue: false hasContentIssue false

Current Gain of an AlGaN/GaN Heterojunction Bipolar Transistor

Published online by Cambridge University Press:  21 March 2011

Yumin Zhang
Affiliation:
Department of Electrical and Software Engineering, University of Wisconsin-Platteville, Platteville, WI 53818, U.S.A
P. Paul Ruden
Affiliation:
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, U.S.A
Get access

Abstract

A novel hybrid model and simulation results for an advanced, graded base AlGaN/GaN heterojunction bipolar transistor structure are presented. The base of the n-p-n HBT examined has two parts, a linearly graded AlGaN layer on the emitter side and a heavily p-doped GaN layer on the collector side. In the hybrid model developed here the potential profile is first calculated self-consistently in the biased state taking into account ionized impurity charges, polarization charges, and majority carrier charges. The minority carrier transport is examined subsequently. Injection of electrons from the emitter is modeled as a thermionic emission process. The minority electron transport process in the graded region is drift-dominated due to the large built-in effective field strength. In the low-field GaN layer of the base, electron transport is assumed to be diffusion-dominated. High-level injection effects are modeled in the framework of the Gummel-Poon model. Example structure design parameters are presented and it is found that the calculated current gain can be greater than 25, with a collector current density of 104A/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jain, S. C., Willander, M., Narayan, J., and Overstraeten, R. Van, J. Appl. Phys. 87, 965 (2000).Google Scholar
2. Pearton, S. J., Zolper, J. C., Shul, R. J., and Ren, F., J. Appl. Phys. 86, 1 (1999).Google Scholar
3. Sullivan, G. J., Chen, M. Y., Higgins, J. A., Yang, J. W., Chen, Q., Pierson, R. L., and McDermott, B. T., IEEE Electron. Dev. Lett. 19, 198 (1997).Google Scholar
4. Li, R., Cai, S. J., Wong, L., Chen, Y., Wang, K. L., Smith, R. P., Martin, S. C., Boutros, K. S., and Redwing, J. M., IEEE Electron Device Lett. 20, 323 (1999).Google Scholar
5. Bykhovski, A., Gaska, R., Shur, M. S., Appl. Phys. Lett. 73, 3577 (1998).Google Scholar
6. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N.G., Chu, K., Murphy, M., Schaff, W. J., and Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W. and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).Google Scholar
7. Katsuragawa, M., Sota, S., Komori, M., Anbe, C., Takeuchi, T., Sakai, H., Amano, H., Akasaki, I., J. of Crystal Growth 189/190, 528 (1998).Google Scholar
8. Kim, K. S., Cheong, M.G., Hong, C.-H., Yang, G. M., Lim, K. Y., Suh, E. -K., and Lee, H. J., Appl. Phys. Lett. 76, 1149 (2000).Google Scholar
9. Nakayama, H., Hacke, P., Khan, M. R. H., Detchprohm, T., Hiramatsu, K., and Sawaki, N., Jpn. J. Appl. Phys. Part 2, 35, L282 (1996).Google Scholar
10. Zhang, Yumin, Ruden, P. Paul, “AlGaN/GaN heterojunction bipolar transistor structures-design considerations”, J. Appl. Phys. 88, 1067 (2000).Google Scholar
11. Grinberg, A. A., Shur, M. S., Fischer, R. J., and Morkoc, H., IEEE Trans. Electron Devices ED–31, 1758 (1984).Google Scholar
12. Foutz, B. E., Eastman, L. F., Bhapkar, U. V. and Shur, M. S., Appl. Phys. Lett. 70, 2849 (1997).Google Scholar
13. Liou, J. J., J. Appl. Phys. 69, 3328 (1991).Google Scholar
14. Antognetti, P. and Massobrio, G., Semiconductor Device Modeling with SPICE, McGraw-Hill, New York, 1988.Google Scholar
15. Bandic, Z. Z., Bridger, P. M., Piquette, E. C., and McGill, T. C., Appl. Phys. Lett. 73, 3276 (1998).Google Scholar