Published online by Cambridge University Press: 15 February 2011
The emission mechanisms of solid PI(BPDA/PDA) derived from biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) were examined with the absorption and fluorescence. spectra of model compounds (denoted by M). M(BPDA/CHA) (CHA: cyclohexyl amine) fluoresces at ca. 430 nm in hexafluoro-2-propanol(HFP) solution, while M(BPDA/AN) (AN: aniline) does not. PI(BPDA/PDA) film does not show the monomer fluorescence of biphenyldiimide unit, but shows only intermolecular CT fluorescence peaking at 530–540 nm. This suggests that for PI(BPDA/PDA) film and PI(BPDA/AN) in solution the local excited state of biphenyldiimide units is deactivated owing to intramolecular charge-transfer(CT).
The intermolecular CT fluorescence reflecting sensitively molecular packing of PI chains was used to monitor isothermal imidization process of poly(amic acid)(PAA) of BPDA/PDA. The fluorescence of PAA(BPDA/PDA) peaking at 490 nm decreases rapidly and disappears at 30–40% conversion, then the fluorescence of PI(BPDA/PDA) peaking at 540 nm increases gradually during isothermal imidization. The fluorescence intensity at 540 nm increases rapidly as imidization proceeds when imidized at higher temperature. A kinetic study on isothermal imidization shows that the vitrification is strongly related to the reorientation of polymer chains and the final PI structures.