Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T20:28:15.305Z Has data issue: false hasContentIssue false

Crystallographic Study of The Initial Growth Region of μc-Si with Different Preferential Orientations

Published online by Cambridge University Press:  01 February 2011

Y. Sobajima
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka, 560-8531, Japan
T. Sugano
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka, 560-8531, Japan
T. Kitagawa
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka, 560-8531, Japan
T. Toyama
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka, 560-8531, Japan
H. Okamoto
Affiliation:
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka, 560-8531, Japan
Get access

Abstract

Growth of microcrystalline silicon (μc-Si) thin films with different preferential orientations has been studied employing XRD measurements versus thickness. The focus of this study is on the influence of preferential orientation on the film growth process. The (220) preferential orientation and randomly oriented μc-Si films studied here were prepared by VHF-PECVD at 180 °C. The thickness evolution revealed that the crystallinity was improved in the μc-Si with (220) preferential orientation μc-Si particularly in the first 0.5-μm of growth, while that in the randomly oriented μc-Si was almost completely unchanged. The difference in the crystallinity in the initial growth region arises from a difference in the growth mechanisms. Specifically, the growth of μc-Si with (220) preferential orientation can be elucidated by a hybrid-phase mode consisting of vapor- and solid-phase growth, whereas the growth of randomly oriented μc-Si can be achieved only by vapor-phase growth as occurs conventionally. Based on the growth mechanisms, the microstructures of μc-Si with both orientations and their influence on the photovoltaic performance are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Matsuda, A., J. Non-Cryst. Solids 338-340, 1 (2004).10.1016/j.jnoncrysol.2004.02.012Google Scholar
2 Shimizu, I., Sol. Energy Mater. & Sol. Cells 66, 124 (2001).Google Scholar
3 Fujiwara, H., Kondo, M., and Matsuda, A., J. Appl. Phys. 91, 4181 (2002).10.1063/1.1457535Google Scholar
4 Kondo, M., Fujiwara, H., and Matsuda, A., Thin Solid Films 430, 130 (2003).10.1016/S0040-6090(03)00093-2Google Scholar
5 Bailat, J., Vallat-Sauvain, E., Feitknecht, L., Droz, C., and Shah, A., J. Non-Cryst. Solids 299-302, 1219 (2002).10.1016/S0022-3093(01)01142-5Google Scholar
6 Meier, J., Flückiger, R., Keppner, H., and Shah, A., Appl. Phys. Lett. 65, 860 (1994).10.1063/1.112183Google Scholar
7 Yamamoto, K., Yoshimi, M., Tawada, Yu., Okamoto, Y., and Nakajima, A., J. Non-Cryst. Solids 266-269, 1082 (2000).10.1016/S0022-3093(99)00907-2Google Scholar
8 Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., Lambertz, A., Mück, A., Rech, B., and Wagner, H., Sol. Energy. Mater. & Sol. Cells 62, 97 (2000).10.1016/S0927-0248(99)00140-3Google Scholar
9 Nasuno, Y., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys. 40, L303 (2001).10.1143/JJAP.40.L303Google Scholar
10 Matsui, T., Kondo, M., and Matsuda, A., Jpn. J. Appl. Phys. 42, L901 (2003).10.1143/JJAP.42.L901Google Scholar
11 Houben, L., Scholten, C., Luysberg, M., Vetterl, O., Finger, F., and Carius, R., J. Non-Cryst. Solids 299–302, 1189 (2002).10.1016/S0022-3093(01)01138-3Google Scholar
12 Toyama, T., Muhida, R., Harano, T., Sugano, T., Okajima, M., and Okamoto, H., Jpn. J. Appl. Phys. 42, L1347 (2003).10.1143/JJAP.42.L1347Google Scholar
13 Toyama, T., Muhida, R., Harano, T., Sugano, T., Sada, C., and Okamoto, H., Tech. Digest of the 14th Intern. Photovoltaic Science and Engineering Conf. 2004, pp.10111012.Google Scholar
14 Sugano, T., Kitagawa, T., Toyama, T., and Okamoto, H. Proc. 31st IEEE Photovoltaic Specialists Conf. (2005) (in press).Google Scholar
15 Sugano, T., Kitagawa, T., Sobajima, Y., Toyama, T., and Okamoto, H., J. Appl. Phys (2005) (in press).Google Scholar
16 Matsui, T., Tsukiji, M., Saika, H., Toyama, T., and Okamoto, H., Jpn. J. Appl. Phys. 41, 20 (2002).10.1143/JJAP.41.20Google Scholar
17 Matsui, T., Muhida, R., Kawamura, T., Toyama, T., Okamoto, H., Yamazaki, T., Honda, S., Takakura, H., and Hamakawa, Y., Appl. Phys. Lett. 81, 4751 (2002).10.1063/1.1527979Google Scholar
18 Vallat Sauvain, E., Kroll, U., Meier, J., and Shah, A., J. Appl. Phys. 87, 3137 (2000).10.1063/1.372311Google Scholar