Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:46:02.653Z Has data issue: false hasContentIssue false

Crystallization of Si(1-yCy Films by Excimer Laser Annealing: Characterization of the Microstructure of the Films

Published online by Cambridge University Press:  15 February 2011

P. Boher
Affiliation:
Sopra S.A., 26 rue Pierre Joigneaux, 92270 Bois-Colombes (France)
M. Stehle
Affiliation:
Sopra S.A., 26 rue Pierre Joigneaux, 92270 Bois-Colombes (France)
J. L. Stehle
Affiliation:
Sopra S.A., 26 rue Pierre Joigneaux, 92270 Bois-Colombes (France)
E. Fogarassy
Affiliation:
Laboratoire PHASE, UPR du CNRS No 292, BP20, 67037 Strasbourg (France)
J. J. Grob
Affiliation:
Laboratoire PHASE, UPR du CNRS No 292, BP20, 67037 Strasbourg (France)
A. Grob
Affiliation:
Laboratoire PHASE, UPR du CNRS No 292, BP20, 67037 Strasbourg (France)
D. Muller
Affiliation:
Laboratoire PHASE, UPR du CNRS No 292, BP20, 67037 Strasbourg (France)
Get access

Abstract

Epitaxial Si(1-y)Cy substitutional alloy layers are prepared on monocrystalline silicon substrates by carbon multiple energy ion implantation followed by XeCl excimer laser annealing on large surfaces. Structural analysis of the films before and after laser annealing are made very precisely using spectroscopie ellipsometry (SE), x-ray diffraction (XRD) and Rutherford backscattering (RBS) techniques. We show that annealing energy densities higher than 2J/cm2 result in monocrystalline epitaxial layers with low quantity of defects. The lattice contraction due to the carbon inclusion increases with the implanted C concentration up to about 1.1%. For higher values a more complex behaviour is observed with partial (or total) relaxation of the layer and/or carbide formation‥

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1)Jain, S.C., Osten, H.J., Dietrich, B., Richter, H., Semicond. Sci. Technol., 10, p. 1289 (1995)Google Scholar
2)Strane, J.W., Stein, H.J., Lee, S.R., Doyle, B.L., Picraux, S.T., Mayer, J.W., Appl. Phys. Lett., 63, N˚20, p. 2786 (1993)Google Scholar
3)Fogarassy, E., Dentei, D., Grob, J.J., Prevot, B., Stoquert, J.P., Stuck, R., MRS Symp. Proceed., V 354, p. 585 (1995)Google Scholar
4)Kantor, Z., Fogarassy, E., Grob, A., Grob, J.J., Muller, D., Prevot, B., Stuck, R., Appl. Phys. Lett., 69, N˚7, p. 969(1996)Google Scholar
5)Strane, J.W., Lee, S.R., Stein, H.J., Picraux, S.T., Watanabe, J.K., Mayer, J.W., J. Appl. Phys., 79, N˚2, p. 637 (1996)Google Scholar
6 ) Cullis, A.G., Series, R., Weber, H.C., Chew, N.G., Semiconductor silicon 1981, Edited by Huff, R.F. (Electrochemical Society, Pennington, N.J. ), p. 518 (1981)Google Scholar
7)Godard, B., Murer, P., Stehle, M., Bonnet, J., Pigache, D., GLC 92; Heraklion, Greece, September (1992)Google Scholar
8)Stehle, M., Laser Focus World, june, p. 135 (1993)Google Scholar
9)Bobo, J., Baylac, B., Hennet, L., Lenoche, O., Piecuch, M., Raqet, B., Oussel, J., Viel, V., Snoeck, E., J. of Magn. And Magn. Mat., 121, 291 (1993)Google Scholar
10 ) Grob, A., Grob, J.J., Muller, D., Prevot, B., Stuck, R., Fogarassy, E., EMRS Spring Meeting, Symposium D, paper D-P4 (1996)Google Scholar