Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T17:23:00.437Z Has data issue: false hasContentIssue false

Crystallization of BaTiO3 Thin Films Prepared by Metalorganic Decomposition with Hydrothermal Treatment at 140°C

Published online by Cambridge University Press:  17 March 2011

Zhiqiang Wei
Affiliation:
Graduate School of Engineering Science, Osaka University, Osaka, Japan
Minoru Noda
Affiliation:
Graduate School of Engineering Science, Osaka University, Osaka, Japan
Masanori Okuyama
Affiliation:
Graduate School of Engineering Science, Osaka University, Osaka, Japan
Get access

Abstract

BaTiO3 (BTO) thin films with perovskite structure have been prepared on Pt/Ti/SiO2/Si substrates using a combined process of a conventional MOD (metal organic decomposition) process and a hydrothermal treatment. The BTO thin films with polycrystalline structure are grown on Pt/Ti/SiO2/Si substrates at a processing temperature of 140°C. The structural development, stoichiometry, spectroscopic, and dielectric properties of the BTO thin films have been systematically investigated. X-ray diffraction patterns show that well-developed crystallites with a pure perovskite phase have been formed. ICP (Inductively coupled plasma) and XPS (x-ray photoelectron spectroscopy) results show that stoichiometric BTO thin films were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Zeng, J., Wang, H., Wang, M., Shang, S., Wang, Z., Lin, C., Thin Solid Films, 322 104 (1998)Google Scholar
2. Weiss, F., Lindner, J., Senateur, J. P., Dubourdieu, C., Galindo, V., Audier, M., Abrutis, A., Rosina, M., Frohlic, K., Haessler, W., Oswald, S., Figueras, A., Santiso, J., Surface and Coatings Technology, 191 133144 (2000)Google Scholar
3. Chiba, T., Itoh, K., Matsumoto, O., Thin Solid Films, 300 6 (1997)Google Scholar
4. Gao, Y., Perkins, C. L., and He, S., J. Appl. Phys. 87 7430 (2000)Google Scholar
5. Kim, T. W., Yoon, Y. S., Yom, S. S., Kim, C. O., Appl. Surf. Sci. 90 75(1995)Google Scholar
6. Byrappa, K., Yoshimura, M., Handbook of hydrothermal technology, (Willim Andrew Publishing LLC, 2001) pp.754814 Google Scholar
7. Kajiyoshi, K., Tomono, K., Hamaji, Y., Kasanami, T. and Yoshimura, M., J. Am. Ceram. Soc. 78 1521(1995)Google Scholar
8. Bendale, P., Venigalla, S., Ambrose, J. R., Verink, E. D. Jr., and Adair, J.H., J. Ceram. Soc., 76 2169 (1993)Google Scholar
9. Fuenzalida, V. M., Lisoni, J. G., Morimoto, N. I., Acquadro, J. C., Appl. Surf. Sci., 108 385 (1997)Google Scholar
10. Dean, John A., Lange's Handbook of Chemistry, (McGraw-Hillbook, New York, 1979) pp.1020 Google Scholar
11. Lisoni, J.G., Piera, F.J., Sanchez, M., Soto, C.F., Fuenzalida, V.M., Appl. Surf. Sci., 134 225 (1998)Google Scholar
12. Pileux, M.E. and Fuenzalida, V.M., J.Appl.Phys., 74 4664 (1993)Google Scholar
13. Wei, Z., Yamashita, K., Okuyama, M., Jpn. J. Appl. Phys., 40 5539 (2001)Google Scholar