Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-20T09:17:45.693Z Has data issue: false hasContentIssue false

Crystallinity of Isolated Silicon Epitaxy (ISE) Silicon-on-Insulator Layers

Published online by Cambridge University Press:  25 February 2011

L.T.P. Allen
Affiliation:
KOPIN Corporation, Taunton, Ma. 02780
P.M. Zavracky
Affiliation:
KOPIN Corporation, Taunton, Ma. 02780
D.P. Vu
Affiliation:
KOPIN Corporation, Taunton, Ma. 02780
M.W. Batty
Affiliation:
KOPIN Corporation, Taunton, Ma. 02780
W.R. Henderson
Affiliation:
KOPIN Corporation, Taunton, Ma. 02780
T.J. Boden
Affiliation:
KOPIN Corporation, Taunton, Ma. 02780
D.K. Bowen
Affiliation:
University of Warwick, Dept. of Engineering, Coventry CV4 7AL, UK
D. Gorden-Smith
Affiliation:
University of Warwick, Dept. of Engineering, Coventry CV4 7AL, UK
C.R. Thomas
Affiliation:
University of Warwick, Dept. of Engineering, Coventry CV4 7AL, UK
T. Tjahjadi
Affiliation:
University of Warwick, Dept. of Engineering, Coventry CV4 7AL, UK
Get access

Abstract

Isolated silicon epitaxy (ISE) is a proven method of producing single crystalline silicon-on-insulator (SOI) material with excellent electrical properties. The presence of the remaining isolated dislocation trails in the epitaxial silicon has led to this investigation of the crystallinity throughout the ISE SOI layer and across the isolated dislocations. The structural perfection of these layers has been examined by defect etching, Nomarski optical microscopy, electron channeling patterns, and with more sensitivity using double crystal synchrotron X-ray diffraction and topography. Defect etching reveals the dislocation density within the layers of production ISE SOI material to be ~5×l0 5 /cm2. Electron channeling pattern techniques have reached the resolution limit of angular orientation resolution for the isolated silicon layer. Finally, synchrotron studies have shown that orientation homogeneity across 5" wafers are preserved to 0.006° and the variation in orientation across the defect trails to be, in general, less than 10 arcsec (0.003°), indicating single crystalline ISE SOI production material.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, C.T., Burns, J.A., IEEE Electron Device Lett., Vol.9, 235 (1988).CrossRefGoogle Scholar
2.A Performance comparison of advanced SOI technologies”, Adams, D., Austin, M., Rai-Choudhury, J., and Hwang, J., Proceedings of the 1988 IEEE SOS/SOI Technology Workshop,(Oct. 3-5, 1988, St. Simons Island, Ga.), p.79.Google Scholar
3. Houston, T.W., IEEE Circuits and Devices Magazine, Vol. 3, 8 (1987).CrossRefGoogle Scholar
4. Colinge, Jean-Pierre, IEEE Electron Device Lett., Vol 7, 244 (1986).CrossRefGoogle Scholar
5. Allen, L.T.P., Batty, M.W., Henderson, W.R., Jersey, T.E., Vu, D.P., and Zavracky, P.M., SPIE Vol. 495, Advanced Processing of Semiconductor Devices II (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wa., 1988), p. 126.CrossRefGoogle Scholar
6. Zavracky, P.M., Vu, D.P., Allen, L.T.P., Henderson, W., Guckel, H., Sniegowski, J.J., Ford, T.P., and Fan, J.C.C., 1987 Materials Research Society Symposium Proceedings, Vol. 107, Silicon-on-Insulator and Buried Metals in Semiconductors, Chen, C.K., Hemment, P.L.F., Sturm, J.C., and Pfeiffer, L., eds., p. 213.Google Scholar
7. Geis, M.W., Smith, H.I., Tsaur, B.Y., Fan, J.C.C., Silversmith, D.J., and Mountain, R.W., J. Electrochem. Soc., 129, 2812 (1982).CrossRefGoogle Scholar
8. Fan, J.C.C., Geis, M.W., and Tsaur, B.Y., Appl. Phys. Lett., 38, 365 (1981).CrossRefGoogle Scholar
9. Maszara, W.P., Giets, G., Caviglia, A., and McKetterick, J.B., J. Appl. Phys., 64, 4943 (1988).CrossRefGoogle Scholar
10. Specifications for ISE SOI wafers, Kopin Corporation, 695 Myles Standish Blvd., Taunton, Ma. 02780.Google Scholar
11. Pfeiffer, L., ATT Bell Labs., contributed photos.Google Scholar
12. Kozubowski, J.A., Gerberich, w.w., and Stefanski, T., J. Mater. Res. 3, 710 (1988).CrossRefGoogle Scholar
13. Hmelo, A.B., Bilello, J.C., Davies, S.T., and Bowen, D.K., Materials Letters 2, 6 (1983).CrossRefGoogle Scholar
14. Bowen, D.K., and Davies, S.T., Nuclear Instr. and Methods 208, 725 (1983).CrossRefGoogle Scholar
15. Allen, L.T.P., Zavracky, P.M., Bowen, D.K., Gorden-Smith, D., Thomas, C.R., and Tjahjadi, T., unpublished.Google Scholar