Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T08:10:54.610Z Has data issue: false hasContentIssue false

Crystalline-Amorphous Interface: Molecular Dynamics Simulation of Thermal Conductivity

Published online by Cambridge University Press:  15 March 2011

Sebastian von Alfthan
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, FINLAND
Antti Kuronen
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, FINLAND
Kimmo Kaski
Affiliation:
Helsinki University of Technology, Laboratory of Computational Engineering P.O.Box 9400, FIN-02015 HUT, FINLAND
Get access

Abstract

Effect of a crystalline-amorphous interface on heat conduction has been studied using atom-istic simulations of a silicon system. System with amorphous silicon was created using the bond-switching Monte Carlo simulation method and heat conduction near room temperature was studied by molecular dynamics simulations of this system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goodson, K. E. and Ju, Y. S., Ann. Rev. Mater. Sci. 29, 261 (1999).Google Scholar
2. Chen, G., Journal of Nanoparticle Research 2, 199 (2000).Google Scholar
3. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B., Nature 413, 597 (2001).Google Scholar
4. Srivastava, G. P., The Physics of Phonons (Adam Hilger, Bristol, 1990).Google Scholar
5. Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 (1985).Google Scholar
6. Tu, Y., Tersoff, J., Grinstein, G., and Vanderbilt, D., Phys. Rev. Lett. 81, 4899 (1998).Google Scholar
7. Keating, P. N., Phys. Rev. 145, 637 (1966).Google Scholar
8. Tu, Y. and Tersoff, J., Phys. Rev. Lett. 84, 4393 (2000).Google Scholar
9. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
10. Müller-Plathe, F., J. Chem. Phys. 106, 6082 (1997).Google Scholar
11. Kugler, S., Molnár, G., Petö, G., Zsoldos, E., Rosta, L., Menelle, A., and Bellissent, R., Phys. Rev. B 40, 8030 (1989).Google Scholar
12. Barkema, G. T. and Mousseau, N., Phys. Rev. B 62, 4985 (2000).Google Scholar
13. Feldman, J. L., Kluge, M. D., Allen, P. B., and Wooten, F., Phys. Rev. B 48, 12589 (1993).Google Scholar