Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T03:54:50.006Z Has data issue: false hasContentIssue false

Crystalline TiO2 Macrocellular Foams with Highly Nano-Mesoporous Framework

Published online by Cambridge University Press:  26 February 2011

Florent Carn
Affiliation:
[email protected], CNRS, Centre de Recherche Paul Pascal, Avenue Albert Schweitzer, PESSAC, Bordeaux, 33600, France, Metropolitan
Stéphane Reculusa
Affiliation:
Hervé Deleuze
Affiliation:
Rénal Backov
Affiliation:
Get access

Abstract

Titanium dioxide macro-cellular monolith-type materials have been obtained with emphases toward controlling porosity at the meso- and macroscopic length scales, leading thus to hierarchically organized porous architectures. First, at the microscopic length scale, either monophasic Anatase, biphasic Anatase-Rutile or monophasic Rutile allotropic forms are generated by varying the applied thermal treatment. At the meso- and/or nanoscopic length scales either lyotropic templates or latex colloids have been used to promote meso- or super-mesoporosity. Particularly, a Pluronic copolymer P-123 combined with cationic surfactant (TTAB) induces vermicular-like mesoporosity associated with a specific surface area around 450 m2·g-1. At the macroscopic length scale a non-static air-liquid foam strategy allows a strong control over the open-cell morphologies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Mann, S., Nature, 1993, 365, 499.Google Scholar
2 Soten, I., Ozin, G.A., Curr. Opin. Coll. Int. Sci., 1999, 4, 325.Google Scholar
3 Soler-Illia, G.J. de A.A., Crepaldi, E.L., Grosso, D., Sanchez, C., Curr. Opin. Colloid Interface Sci., 2003, 8, 109;Google Scholar
Antonelli, D.M., Micropor. Mesopor. Mater., 1999, 30, 315;Google Scholar
Zhou, Y., Antonietti, M., J. Am. Chem. Soc., 2003, 125, 14960;Google Scholar
Dag, O., Soten, I., Celik, O., Polarz, S., Coombs, N., Ozin, G.A., Adv. Funct. Mater., 2003, 13, 30.Google Scholar
4 Holland, B.T., Blanford, C.F., Stein, A., Science, 1998, 281, 538;Google Scholar
Wijnhoven, J.E.G.J., Vos, W.L., Science, 1998, 281, 802;Google Scholar
Meng, Q.-B., Fu, C.-H., Einaga, Y., Gu, Z.-Z., Fujishima, A., Sato, O., Chem. Mater., 2002, 14, 83;Google Scholar
Wang, D., Caruso, R.A., Caruso, F., Chem. Mater., 2001, 13, 364.Google Scholar
5 Binks, B.P., Adv. Mater., 2002, 14, 1824;Google Scholar
Carn, F., Colin, A., Achard, M.-F., Deleuze, H., Sellier, E., Birot, M., Backov, R., J. Mater. Chem., 2004, 14, 1370;Google Scholar
Zhang, H., Hardy, G.C., Khimyak, Y.Z., Rosseinsky, M.J., Cooper, A.I., Chem. Mater., 2004, 16, 4245.Google Scholar
6 Fornasieri, G., Badaire, S., Backov, R., Mondain-Monval, O., Zacri, C., Poulin, P., Adv. Mater., 2004, 16, 1094.Google Scholar
7 Bagshaw, S.A., Chem. Commun., 1999, 767;Google Scholar
Chandrappa, G.T., Steunou, N., Livage, J., Nature, 2002, 416, 702;Google Scholar
Carn, F., Colin, A., Achard, M.-F., Deleuze, H., Backov, R., Adv. Mater., 2004, 6, 140.Google Scholar
8 Carn, F., Steunou, N., Livage, J., Colin, A., Backov, R., Chem. Mater., 2005, 17, 644.Google Scholar
9 Carn, F., Colin, A., Achard, M.-F., Deleuze, H., Sanchez, C., Backov, R., Adv. Mater., 2005, 17, 62.Google Scholar
10 Akin, F.A., Zreiqat, H., Jordan, S., Wijesundara, M.B.J., Hanley, L., J. Biomed. Mater. Res., 2001, 64A, 105;Google Scholar
Fujishima, A., Hashimoto, K., Watanabe, T.. TiO2 photocatalysis: Fundamentals and applications; Bkc Inc.: Tokyo, 1999;Google Scholar
Coakley, K.M., McGehee, M.D., Appl. Phys. Lett., 2003, 83, 3380.Google Scholar
11 Guyot, A., J. Chudej, Polymer, 1999, 40, 5233.Google Scholar
12 Calleja, G., Serrano, D.P., Sanz, R., Pizarro, P., García, A., Ind. Eng. Chem. Res., 2004, 43, 2485 Google Scholar
13 Bennadja, Y., Beaunier, P., Margolese, D., A. Davidson Microporous Mesoporous Mater. 2001, 147, 44 Google Scholar