Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:19:59.124Z Has data issue: false hasContentIssue false

Crystal Structure Dependence of Antiferromagnetic Coupling in FE/SI Multilayers

Published online by Cambridge University Press:  15 February 2011

R. P. Michel
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, P. 0. Box 808, Livermore CA 94551
A. Chaiken
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, P. 0. Box 808, Livermore CA 94551
M. A. Wall
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, P. 0. Box 808, Livermore CA 94551
Get access

Abstract

Recent reports of temperature dependent antiferromagnetic coupling in Fe/Si multilayers have motivated the generalization of models describing magnetic coupling in metal/metal multilayers to metal/insulator and metal/semiconductor layered systems. Interesting dependence of the magnetic properties on layer thickness and temperature are predicted. We report measurements that show the antiferromagnetic (AF) coupling observed in Fe/Si multilayers is strongly dependent on the crystalline coherence of the silicide interlayer. Electron diffraction images show the silicide interlayer has a CsCl structure. It is not clear at this time whether the interlayer is a poor metallic conductor or a semiconductor so the relevance of generalized coupling theories is unclear.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Parkin, S. S. P., PRL 67, 3598 (1991).Google Scholar
2. Bruno, E. and Gyorffy, B. L., PRL 71, 181 (1993).Google Scholar
3. Fullerton, E. E., Mattson, J. E., Lee, S. R., Sowers, C. H., Huang, Y. Y., Felcher, G., Bader, S. D., and Parker, F. T., JAP 73, 6335 (1993).Google Scholar
4. Briner, B. and Landolt, M., PRL 73, 340 (1994).Google Scholar
5. Zhang, S., Unpublished, (1994).Google Scholar
6. Bruno, P., PRB 49, 13231 (1994).Google Scholar
7. Slonczewski, J. C., PRB 39, 6995 (1989).Google Scholar
8. Chaiken, A., Honea, E. C., Rupprecht, W. S., Torres, S., and Michel, R. P., Rev. Sci. Instr. 65, 3870 (1994).Google Scholar
9. Dufour, C., Brunson, A., Marchal, G., George, B., and Mangin, P., JMMM 93, 545 (1991).Google Scholar
10. Ceglio, N. M., Streams, D. G., Gaines, D. P., Hawryluk, A. M., and Trebes, J. E., Opt. Lett. 13, 108 (1988).Google Scholar
11. Steams, D. G., Rosen, R. S., and Vernon, S. P., J. Vac. Sci. Technol. A9, 2662 (1991).Google Scholar
12. Mattson, J. E., Kumar, S., Fullerton, E. E., Lee, S. R., Sowers, C. H., Grimsditch, M., Bader, S. D., and Parker, F. T., PRL 71, 185 (1993).Google Scholar
13. Binary Alloy Phase Diagrams, Edited by Massalski, T. B., (American Society for Metals International, Materials Park OH, 1986), vol. 2, pp. 1108.Google Scholar
14. Kanel, H. von, Onda, N., Sirringhaus, H., Muller-Gubler, E., Goncalves-Conto, S., and Schwarz, C., Applied Surface Science 70/71, 559 (1993).Google Scholar