Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:41:41.180Z Has data issue: false hasContentIssue false

Critical Indicator of Slip-Prone Clayey Soils Due Rainfall in Teziutlán-Puebla-México Zone: Yield Stress Determination by Slump Tests

Published online by Cambridge University Press:  01 February 2011

Arturo. F. Méndez-Sánchez
Affiliation:
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 Unidad Profesional Adolfo López Mateos, Col. Lindavista, C. P. 07738, México Distrito Federal.
Karen E. Nieto Zepeda
Affiliation:
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 Unidad Profesional Adolfo López Mateos, Col. Lindavista, C. P. 07738, México Distrito Federal.
Leonor Pérez-Trejo
Affiliation:
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 Unidad Profesional Adolfo López Mateos, Col. Lindavista, C. P. 07738, México Distrito Federal.
Ana M. Paniagua-Mercado
Affiliation:
Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Edif. 9 Unidad Profesional Adolfo López Mateos, Col. Lindavista, C. P. 07738, México Distrito Federal. Centro de Asimilación Tecnologica FESC-UNAM, Av. Jorge Jimenez Cantú s/n Col. Atlamica C. Izcalli Edo. de México.
Get access

Abstract

The yield stress evaluation as a function of water content for slip-prone clayey soils due to rainfall is studied in this work, particularly, the clayey soil from the region Teziutlán-Puebla-México. Yield stress was calculated as a function of water content using the slump test in cylindrical geometry. Results show a critical point of water content where yield stress decreases dramatically, and those values were related to the historical daily rain data. It was found a maximum precipitation millimeters that triggers the landslide, but still is low compared with the historical reported data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. VanDine, D. F., Rodman, R. F., Jordan, P., Dupas, J., Lanslides 2, 257 (2005).Google Scholar
2. Iverson, R. M., Reviews of Geophysics 35, 245 (1997).Google Scholar
3. Denlinger, R. P., Iverson, R. M., Journal of Geophysical Research 106, 553 (2001).Google Scholar
4. Chien-Yuan, C., Tien-Chen, C., Fan-Chieh, C. Y., Wen-Hui, Y., Chun-Chieh, T., Environ Geol. 47, 715 (2005).Google Scholar
5. Sultanov, K. S., Khusanov, B. E., Soil Mechanics and Foundations Engineering 38, 80 (2001).Google Scholar
6. Méndez-Sanchez, A. F., Pérez-Trejo, L., Paniagua Mercado, A. M., Rev. Mex. Fis. (submitted). Google Scholar
7. Flores Lorenzo, P., Alcántara Ayala, I., Investigaciones geográficas Boletín 49, 7 (2002).Google Scholar
8. Pashias, N., Boger, D. V., Summers, J., Glenister, D. J., J. of Rheol. 40, 1179 (1996).Google Scholar
9. Sánchez Crúz, P., “Análisis del esfuerzo de cedencia de suelos arcillosos como posible indicador de un derrumbe,” Tesis de licenciatura de la ESFM, Instituto Politécnico Nacional (2008).Google Scholar